-]~

t | have been using Zen for over a year (as well as Zeap), and have
patched Zen to run on Nas-Sys., It is a very fast assembler with one
t drawback - a lousy error handling function ! It aborts assembly on the
 first error it finds. In ™Writing Interactive Interpreters and
i Compiliers', P.J. Brown points out that a compiler spends most of its
t time in the error handling mode, and should be designed to do this well
I - Zen definitely doesn't. | have been tidying it up, and have written a
i number of Pseudo ops: TITLE to title a printed page, LIST and UNLIST to
allow selective printout of sections during assembly. RCAL and SCAL to
I make 1ife under Nas-Sys easier. | have also taken the DB, DW, DM,
| pseudo ops to Zilog/Mostek standards (DEFB etc). My next miracle will
t be to tidy up the error handling, so that it will do the first pass,
' and point all first pass errors. Then (perhaps) a macro facility ?

STOP!... (please?)

E HALT ! By Richard Beal

t If you want to halt a program this can be done by including the code 76

i in your program. When this HALT instruction is executed, the program

} counter stops b.ing incremented and an endless stream of NOPs are
- executed. The Z80 CPU detects that it has halted and a LED on the
- Nascom lights to show that it Is in a HALT state.

| There are two ways to leave a HALT state. The first and most commonly
i used is to press Reset, which restarts the computer and reinitialises

| Nas-Sys.

t The second method is for there to be ar interrupt. In fact, if you were
t writing a program which was to do nothing at all except when an
L interrupt occurred, vou could just code a HALT instruction. Note that
[if you intended the Z80 to re-enter the HALT state after the completion
i of the interrupt, then the code would be as follows:

L 76 18 FD
i as the address of the HALT (pushed on the stack) at the start of the

;interrupt, is POPed off and incremented when a RETI instruction 1Is
encountered,

t fhis explains why you can Single-step through HALT instructions. The
L HALT s executed once, but the NMI (Non Maskable Interrupt) generated
L by Single-stepping jumps out of the HALT state at the end of the

f instruction.

k' |f you try to execute a program which has a HALT instruction as the
f first byte, you will find that it will not HALT. The reason is that the
! Execute command in fact Single-steps the first instruction and then
t executes normally. So if the program was:

76 it would not HALT

 But if it was:

00 76 it would HALT.

