

 MICROPOWER VOLUME 1, NUMBER 1

 � �

 August, 1981 95 p

P R O G R A M P O W E R P R I C E L I S T

ALL PROGRAMS SUPPLIED ON CASSETTE IN CUTS/KANSAS CITY FORMAT

 THE SPACE SYNDROME
Lunar Lander Supreme (16k/B/G)
Startrek II (32k/G/B)
Invasion Earth (MC/G)
Invasion Earth (MC/G – sound chip)
Alien Labyrinth (16k/B/G)
Super Startrek (16k/B)
Cliff Invasion (B/G)
Space Fighter (B/G)

 SOUND OUTPUT
AY-3-8910 Sound Chip
60 Page Data Manual (No VAT)
Sound Chip Interface Board
Sound Chip Demo Program (MC)
Audio Board and Speaker
Music Box (16k/B)
Road Race (MC/G)
Cowboy Shoot Out (MC/G)
Musical Break-out (MC/G)

 BOARD GAMES
GAMES GRAPHIC ROM
GAMES GRAPHICS ROM/ADAPTOR
Sargon Chess Book
 Book with program
 Book/Prog/ROM/Adaptor
Draughts (B/G) *
Backgammon (16k/B/G) *
*Please state Ordinary or ROM version
3D Noughts & Crosses
Tantaliser (B/G)
Minotaur (16k/B)
Othello (B)
Submarine Chase (B/G)

 COTTIS BLANDFORD
Add a Cottis Blandford cassette
To your Nascom 1 for reliable
And fast loading of CUTS tapes
(NASCOM 2 format)
Kit

£9.95
£9.95
£8.95

£10.95
£6.95
£6.95
£6.95
£5.95

£6.45
£2.25

£13.50
£5.95

£10.75
£9.95
£4.95
£3.95
£3.95

£15.00
£18.90
£9.50

£19.50
£35.00
£7.95
£7.95

£3.95
£3.95
£3.95
£3.95
£3.95

£14.90

 SPECIALITIES
WORDEASE Word Processor (MC)
Nascount Personal Finance (16k/MC)
Club Membership (16k/MC)
Constellation (16k/B)
VORTEX Graphics subroutines (MC)
Mini Toolbox (MC)
Graph Plotter (B/G)
Vocabulary Tutor (B)
Renumber (MC)
Xtal Basic 2.2 (MC)
Nascii (B/G)
Basic Programmers aid (B)
Super life (MC)
Indexed File Handler (B)
Biorhythm (B/G)

 COMPUTER ASSISTED LEARNING
WIRRAL PILOT v4.0 (MC)
Butterfly (B/G)
Reading Test Cards (B/G)
Abacus (B/G)

 FAST INTERACTIVE GAMES
Driver (B/G)
Demonoes (B)
Lumberj ack (MC)
Slalom (B/G)
Sheepdog Trials (B/G)
Death Run (B/G)
Dracula’s Castle (B)
Secret Agent (B/G)

 MISCELANEOUS
BLACKJACK (B/G)
Labyrinth (B/G)
Spider (B/G)
Mindbender (B)
Fruit Machine (B/G)
Beetle (B/G)
Stockmarket (B)
Hammurabi (B)
Scramble (B)
Code Breaker (B)

£25.00
£9.95
£9.95
£6.95
£8.95
£5.95
£4.95
£5.95
£3.95

£35.00
£4.95
£4.95
£6.95
£5.95
£3.95

£12.95
£5.95
£4.95
£3.95

£4.95
£3.95
£3.95
£3.95
£3.95
£3.95
£3.95
£3.95

£5.95
£4.95
£4.95
£4.95
£4.95
£3.95
£3.95
£3.95
£3.95
£3.95

 B = Nascom Basic (state ROM or Tape)
 MC = machine code
 G = Nascom Graphics

The programs require 8K RAM unless otherwise stated

PROGRAM POWER, 5, WENSLEY ROAD, LEEDS, LS7 2LX

= - + - = - + = - + - = - + - =

MICROPOWER Volume 1, No. 1 August, 1981

CONTENTS

Editorial Page 1
A Programmable Character Generator for Nascom 1 Page 2
Letters to the Editor Page 5
Software for Programmable Character Generators Page 6
Printerface - the Epson MX 8O Page 12
Hands On - a beginners tale Page 16
Snowdinger - a cure for screen flash Page 20
Rubik Cubik Display Routine Page 27
Nas-Sys Monitors Page 28
News from the Clubs Page 32

EDITORIAL

Why do we need a magazine for Nascom users? Firstly, there is a lot
happening on the Nascom front at the moment. In the face of what appeared to
be the imminent demise of the company many people who had been waiting for
promised ‘goodies’ to appear started to produce their own add-ons. Lucas
eventually came to the rescue, but the death threat had by then has its effect.

Secondly, the popular computer magazines do not give Nascom the space that

Tandy, Apple, Pet, etc., etc., receive.

Thirdly, the system’s users are tremendously enthusiastic. In many local

computer clubs the Nascom owners are the most active group.

Finally - well, the answer might be that there is no place for the magazine.

Perhaps Nascom owners are more interested in communicating with the machine
than with other users. We shall soon find out, because the magazine will only
survive if people - that means you - will write about their enthusiasms.

So write - say what you liked and didn’t like, tell us what you want to read

about, ask questions (and answer the questions of others), and above all write
an article, short or long, because that is one way to ensure that the magazine
contains topics that interest you.

Unless the article is marked to the contrary, information may be reprinted or copied
for non-commercial purposes providing that the source is acknowledged.

Page 1

A PROGRAMMABLE CHARACTER GENERATOR FOR NASCOM 1

by S. Hope

The main drawback of the standard ROM based graphics for Nascom is that
while many programs use the standard “pixel” characters, others, for example
Sargon, need special character sets to be most effective. One solution is to have
two or more switch-selectable graphics ROMS, but a more effective answer is to
store the data which defines the graphics characters in RAM. Any special
characters required in a program can then be loaded into this RAM either from tape
or by the program itself. In addition, a programmable character generator can
be used to simulate bit-mapped high resolution graphics.

The unit described below is simple and cheap to build. It allows up to 128

characters to be loaded into RAM and used as normal graphics characters at
any screen location. Each character consists of 16 rows of 8 dots; the data
for the character is stored as 16 consecutive bytes in the P.C.G. RAM. A few
modifications need to be made to the basic Nascom 1, but the unit does not need a
buffer board or any other expansion to be present.

The 2K of RAM is mapped as “write only” memory at addresses £000 - £7FF,

coincident with the monitor address space. This reduces the address decoding
logic required, and ensures that the unit is compatible with the memory allocation of
machines with different software layouts. This is very effective when the device
is used purely as a character generator, but has a drawback when it is used in a
program which needs to keep track of which dots on the screen are “on”; as
the processor cannot read the P.C.G. RAM (reading this address space simply
accesses data in the monitor) a copy of this 2K must be kept at some location in
the main memory.

The unit is built on a prototyping board. Some soldering ability and

considerable patience is required to hard wire all the address and data lines to the
RAM. If you are short on either, or have any doubts about the modifications
needed, you would probably do better to stick to one of the commercial P.C.G.’s
available.

To simplify connection to the Nascom, the original 6576 character generator is

resited on the new board, and a Jumper cable runs from this board to the 6576
socket on the Nascom. The state of bit 7 in the V.D.U. RAM determines whether the
data for the display is obtained from the 6576 (bit 7 = 0) or from the RAM (bit 7 = 1).
Because the outputs of the 6576 have no high impedance state this selection is
done by means of a set of two multiplexors (74LS157, IC’s 10 and 11). The 74157
is a four-pole two-way switch contolled by a voltage applied to pin 1.

The P.C.G. RAM is connected to the character and row select lines from the

6576, and the Nasbus address lines A0 - A9, through a further set of multiplexors
(IC’s 1 - 3). When the Nascom writes to an address in the range £000 - £7FF,
these multiplexors are switched to the Nascom address lines, the chip select signal
for the correct RAMs is taken low, and the write enable signal for all the 2114s is
low. An 81LS95 octal buffer (IC 4) gates the data from the data bus into the 2114
I/O lines.

Page 2

During the access -the data -to the V.D.U. is disabled by taking the enable lines to
ICs 10 and 11 to +5 volts. A monostable, IC 16 can be used to lengthen the write
pulse to reduce flashes on the screen.

The 2114 is a 1K x 4 bit static RAM, so a pair of 2114s needed for each 1K

bytes. Identical address lines on each of the four RAM chips are tied together, and
simlarly the eight data lines from the two pairs of chips are interconnected. When
an address is accessed data is only interchanged with the pair of chips for which
the CS signal is low, which is determined by the state of line 4 from the character
generator socket for V.D.U. access, and by the state of A10 for processor
access. The direction of the data transfer is determined by the WR signal.

The layout of the circuit is not particularly critical. The commonest problem is

caused by coupling between the lines from pins 21 - 24 of the character generator
socket. These lines carry signals derived from the crystal oscillator on the C.P.U.
board via a divider chain. If a long ribbon cable is used to connect the unit to the
main board interaction between these adjacent lines may cause screen Jitter.
Fortunately the solution is simple - just separate the lines from the main cable.

MODIFICATIONS TO THE NASCOM
The Nascom character generator socket has two unconnected lines. These

are used to connect bit 7 of the V.D.U. RAM to the unit and extra data output from
the unit. This does not affect the operation of the Nascom if the unit is disconnected
and the 6576 is replaced in its original socket. The following modifications
should be made to the Nascom board (IC numbers prefixed by an N refer to the
numbers used in the Nascom 1 manual).

Pin 11 of N IC 17 should be bent horizontal so that it is not in contact with its

socket and connected to N IC 15 pin 1. Similarly, pin 10 of N IC 15 is bent
horizontal and connected to pin 10 of the character generator socket on the
Nascom. Pin 12 of N IC 20 is connected to N IC 17 pin 18 and pin 19 of N IC 17 is
conected to pin 14 of the character generator socket. The connections to N IC 15
are necessary because in the standard Nascom 1 V.D.U. the last bit in each line
of the characters is set to zero; this leaves a gap between each character, which
is not wanted in the case of graphics characters. Please note that pin 11 of N IC 17
and pin 10 of N IC 15 are the only pins which should be bent (this is easier than
tracing tracks and then cutting the wrong one!).

The unit is designed specifically for a Nascom 1. It should not be difficult to

adapt it for a Nascom 2, because you already have a socket decoded for a graphics
ROM. I have not tried adapting the circuit because none of my friends with
Nascom 2’s will let me perform the necessary surgery!

* * * * * * * * * * * * * * *

Page 3

Chips used:-
 74LS157 5 off IC 1,2,3,10,11
 81LS95 or 81LS97 1 off IC4
 2114 4 off IC 5,6,7,8
 6576 1 off IC 9 (from Nascom board)
 74LS121 1 off IC 12
 74LS00 2 off IC 13,14

Connections to the Nascom 1:-
 24 lines from the character generator socket.
 Ten address lines (A0 –A9)
 Eight data lines from the expansion socket
 The WR line
 Connections from pins 4 and 5 of N IC 36a.

Block Diagram

Pin Connections

Page 4

LETTERS

IS THERE ANYBODY OUT THERE?
Dear Sir,

I am very interested in you new magazine from a club/school point of view.
However, I do not seem to be able to contact any user groups or computer clubs in my area,
and it is not through want of trying. There must be some Nascom Novices keen to form a
user group in the Berkshire area,

 Yours faithfully,
 Mike Rothery,
 37, Eton Wick Road,
 Windsor

HELP WANTED
Dear Sir,

I have a Nascom 2, I have read the manual, I have used PEEK and POKE in
programs - BUT - what am I doing? So PEEK looks at memory and POKE modifies memory;
why am I PEEKing and POKEing a particular number, what is the significance of that
number, what number do I need to poke for a specific task, how do I arrive at the correct
number, and, finally, why isn’t there an index to such things?

 Yours faithfully,
 D. C. Killick,
 Cardiff

* Alright, if that is what you want we will provide it.

WRITE NOW
Dear Sir,

I would like to see the magazines:-
a) Include information on the compatibility of the many add-ons that are now available
from Nascom, Gemini, Microvalue, Interface, etc.
b) Publish listings of the software from Gemini, etc., as many products do not come with
listings.
c) Publish an article on the history of Nascom
 All the best with the new mag - I would rather have my Nascom than one of
those American or Japanese plastic boxes any day,
 Yours Sincerely,
 C. F. A. Waller,
 Dunstable
* To provide a full listing with a product would add quite a lot to the cost and I don’t think
firms would be very happy to see their software published!

MORE IDEAS
Dear Sir,

In general I would like to read articles on the following topics;
1) Hardware problems that people have experienced, and their solutions.
2) Any special hardware interfacing.
3) Interesting and unusual programs.
4) Useful routines and clever solutions that have been devised to overcome some of the
machines shortcomings.
 Yours faithfully,

A.J. Littlewood,
Langley

* I didn’t know it had any!

Page 5

SOFTWARE FOR PROGRAMMABLE GRAPHICS
by J.Haigh

A character generator is merely a memory device which stores data defining

which points within the character area are ‘on’. In the Nascom each character
consists of 16 lines of 8 dots and the data is stored as 16 consecutive bytes.
When the V.D.U. circuitry is displaying a particular character it looks at the data
stored in the generator, selecting the byte appropriate to the current line. This byte
is passed to a device which looks at each bit in turn; if the bit is a ‘1’ the intensity of
the beam scanning the T.V. screen is intensified and a dot appears.

In the Nascom 2 the data in the character generator is displayed with the
least significant bit on the right of the character, while the system fitted to my
Nascom 1, which is a combination of Steven Hope’s P.C.G. and an early Bits and
P.C.s graphics board, displays the bits in the opposite order. In the software
discussed below I shall stick to the Nascom 2 display order, but indicate how to
change the programs for non-standard machines. A further incompatibilty is caused
by the fact that the Nascom 2 only displays 14 lines per character. However, a
simple modification has been published in the Liverpool Software Gazette which
produces the full 16 line display.

The simplest way to use a programmable character generator is to store
sets of characters on tape and load each set as it is required, but this soon becomes
tedious. Special characters can be incorporated into the program that uses them
and written to the P.C.G. either by a copy routine, for a machine code program, or
by a READ, POKE loop in Basic. However, character A0 and the pixel set (C0 -
FF) merit individual attention. The Zeap assembler uses character A0 to mark
the end of a line. In the standard Nascom 2 graphics set this character is identical
to the space character and so is not noticed on the screen; if A0 is not clear, as it will
not be if you have Just switched on or have been using special characters, the
Zeap display is very untidy. A similar problem is found with Nas Debug, which uses
character C0 as a separator. Of course, you can always clear these characters
directly by a modify command, but a better solution is to have a short routine in
EPROM which clears A0 and writes the standard pixel set from C0 to FF. A listing
of such a routine is given below.

It is followed by an even simpler program which writes the TRS80 pixel set
into the Nascom P.C.G. This is quite useful if you are trying to adapt a program
which uses TRS80 graphics to run on your Nascom. If your machine displays the
generator bits in inverse order you will have to change line 270 to LD A 15 and line
320 to ADD A £F0; similarly, the values in lines 540 and 580 should be interchanged.
On a Nascom 1 the upper 4 pixels consist of 5 lines of 4 dots, while the bottom 2
contain 6 lines. As an unmodified Nascom 2 misses out the two bottom lines, in this
case the lowest pixels are 4 x 4.

You will soon want to invent your own characters, either to be used
singly or in blocks - you can get very impressive high-resolution pictures with 128
graphics characters in a 16x8 block. The difficulty is working out what data to put in
the P.C.G. RAM. One method is to draw the characters on graph paper and then
convert the diagrams to bytes. The third program below can be used to draw
characters directly from the keyboard. The program is executed by entering E1000
AAAA, where AAAA is the address of your P.C.G. RAM or, if your P.C.G.
address is coincident with an area of EPROM as in Steve Hope’s design, an area of

Page 6

free RAM where a copy of the P.C.G. data can be maintained. The
characters are shown on the right of the screen on a large scale, each bit being
represented by two pixels. The pixels are turned on and off by the eight leftmost
alphanumeric keys in the four rows of the keyboard (1-8, Q-I, A-K and Z-,). An
arrow indicates which set of four lines is currently selected; keys 0, P, ;, and /
move the arrow so that all 16 lines can be modified. The character being
defined appears at the cursor, which can be moved around the left half of the
screen by means of the cursor keys. This character can be left at any position by
pressing key -, and removed by = (shift/-); you can thus build up blocks of
characters to draw a complex diagram.

 At the bottom of the screen the program lists the hex value of the
character being defined and the 16 bytes of data in that character in hex (for use
in machine code programs) and in decimal (for use in Basic). You can step
forwards or backwards through the character set with the N/L and BS keys.
When you first select a character it will probably contain unwanted data; this can
be erased by CONTROL/C. Because the program uses the pixel set to produce
the large-scale diagram of the character only 64 characters can be defined at
one time; the program will thus work with a P.C.G. system which has only 1K of
RAM and keeps the pixel set permanently in EPROM. The modifications for
inverse display are:- change (1055) to £0F, (105F) to £F0. (124A) to £01, (1250)
to 02, and (12A9), (12B3), (12BD), (12D9) to 0E. If your P.C.G. RAM is
coincident with a block of ROM, its address should be placed at £12EC, £12ED.

 The fourth program is included as a demonstration of what can be
produced by programming a block of characters. It displays a picture of the
space shuttle which moves smoothly across the screen. Most of the program
consists of a data table which is copied to the P.C.G. RAM to produce the intitial
image. This is then moved by rotating each byte of the graphics characters
one bit at a time. If you wish to convert this program for an “inverse order”
display you will have to change the byte at £135F to £16, and invert the data
table. I have included a routine at £13C0 which performs this inversion.

 Finally, there are two short programs to demonstrate plotting points
from Basic. The first program plots the orbit of a satellite around two primaries,
one visible and the other invisible. The second shows how to produce simple
graphs in Basic. Both routines set the points directly from Basic and could
obviously be speeded up by using machine code accessed by a USR call. With
a 128 character P.C.G. you have just enough characters to plot a sine curve
and the axes at full-screen :Size. If you try to plot multiple curves you will find that
you run out of characters - for such displays you need bit-mapped graphics.
However, it is surprising what effective displays you can obtain with a simple
P.C.G.; a life program is most impressive on a 384 x 240 array. Now that
several commercial graphics units are available I hope that software will be
produced which makes full use of the high resolution possible.

Page 7

1000
1000
1003
1006
1007
1008
100A
100C
100D
100F
1010
1011
1013
1014
1016
1018
101A
101C
101D
101E
1020
1021
1023
1024
1026
1027
1029
102B
102D
102F
1031
1033
1035
1036
1037
1039
103A
1000
1000
1002
1005
1006
1008
100A
100C
100E
100F
1010
1012
1013
1015
1016
1018
101A
101C
101E
101F
1021
1023
1024
1025
1027
1028

210000
110002
19
E5
0610
3600
23
10FB
E1
19
0EC0
C5
D70B
D709
0606
D707
C1
0C
20F3
C9
0605
AF
CB09
C5
3002
3EF0
CB09
CB09
CB09
3002
C60F
77
23
10FC
C1
C9

0EC0
210000
C5
D70B
D709
0606
D707
C1
0C
20F3
C9
0605
AF
CB09
3002
3EF0
CB09
C5
3002
C60F
77
23
10FC
C1
C9

0010
0020
0030
0040
0050
0060
0070
0080
0090
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
0400
0410
0420
0430
0440
0450
0460
0470
0480
0490
0500
0510
0520
0530
0540
0550
0560
0570
0580
0590
0600
0610
0620
0630

CLRAO

SBC

PIX5
PIXEL

RRC3

LDHLA

TPUSH

TRSP5
TRSPIX

TRRC

TRR2

ORG
LD
LD
ADD
PUSH
LD
LD
INC
DJNZ
POP
ADD
LD
PUSH
RCAL
RCAL
LD
RCAL
POP
INC
JR
RET
LD
XOR
RRC
PUSH
JR
LD
RRC
RRC
RRC
JR
ADD
LD
INC
DJNZ
POP
RET
ORG
LD
LD
PUSH
RCAL
RCAL
LD
RCAL
POP
INC
JR
RET
LD
XOR
RRC
JR
LD
RRC
PUSH
JR
ADD
LD
INC
DJNZ
POP
RET

£1000
HL 0
DE £200
HL DE
HL
B 16
(HL) 0
HL
CLRA0
HL
HL DE
C £C0
BC
PIX5
PIX5
B 6
PIXEL
BC
C
NZ SBC

B 5
A
C
BC
NC RRC3
A £F0
C
C
C
NC LDHLA
A 15
(HL) A
HL
LDHLA
BC

£1000
C £C0
HL 0
BC
TRSP5
TRSP5
B 6
TRSPIX
BC
C
NZ TPUSH

B 5
A
C
NC TRRC
A £F0
C
BC
NC TRR2
A 15
(HL) A
HL
TRR2
BC

;
;
;

;
;
;

;
;

;
;
;
;

;
;
;

;
;
;

;
;
;

;
;
;
;

;

;

;

;

;

;

;
;

;
;
;

Nascom 2 pixel set
Put your P.C.G. address here
Offset to character £A0

Save HL
Sixteen bytes to be cleared
Set all bytes to zero

Recover HL
Now go to character £C0
; Character is kept in C
Save BC
Set 5 top bytes as necessa
Set next 5 bytes
Set bottom 6 bytes

Recover BC
Next character
Continue until zero

Routine to set 5 bytes
Clear A
Test bits 0,1 or 2

Jump if bit = 0
Draw pixel if bit = 1
Now test bits 3,4 or 5

Jump if bit = 0
Draw pixel if bit = 1
Set number of lines
Stored in B

Recover BC

TRS80 pixel set

Put your P.C.G. address here

Two sets of 5 lines

One set of six lines

Test bits 0, 2, or 4

Draw pixel if bit = 1
Test bits 1, 3, or 5

Draw pixel if bit = 1
Set number of lines
Stored in B

Page 8

T1000 1300 0 8 1
 1000 C3 83 10 31 32 33 34 35

1010 59 55 49 41 53 44 46 47
1020 4E 4D 2C 74 65 64 20 11
1030 CD 40 10 11 64 00 CD 40
1040 AF 3C ED 52 30 FB 3D 19
1050 09 C5 30 02 3E F0 CB 09
1060 77 FD 77 00 FD 23 23 10
1070 CB BF 07 17 CB 14 17 CB
1080 10 19 C9 EF 0C 00 3A 0B
1090 6F 75 20 68 61 76 65 20
10A0 72 65 64 20 74 68 65 20
10B0 41 4D 20 61 64 64 72 65
10C0 0E 0C 22 25 10 3E 20 32
10D0 21 00 00 FD 2A 25 10 11
10E0 CD 4C 10 04 CD 4E 10 CD
10F0 0C 00 21 6A 08 36 E0 06
1100 C4 06 05 11 40 00 19 36
1110 2D 36 D2 10 FB 2D 36 D8
1120 3E 0D 32 B4 08 3A 23 10
1130 0A 22 29 0C EF 43 68 61
1140 6B 10 EB 21 CA 0A 22 29
1150 54 21 4A 0B 22 29 0C E1
1160 04 CD 66 11 18 27 EF 20
1170 80 A7 ED 52 30 0A EF 2D
1180 EB EF 20 00 CD 27 10 DF
1190 0C DF 7B 11 FF FF FE 11
11A0 0E 11 C0 FF FE 13 28 07
11B0 29 0C 3A 24 10 77 19 7C
11C0 FE 0A 20 04 26 08 18 11
11D0 EE 20 6F 18 04 FE 09 28
11E0 77 18 AB FE 03 20 0D CD
11F0 FB C3 94 12 FE 30 20 23
1200 21 B4 08 01 40 00 36 20
1210 36 20 21 B4 08 19 36 0D
1220 21 04 00 1E 80 18 D7 FE
1230 00 18 CB FE 2F 20 09 DD
1240 21 03 10 0E 04 1E 00 06
1250 0A 10 F8 1C 0D 20 F0 FE
1260 10 C3 25 11 FE 3D 20 04
1270 3A 23 10 3D CB FF 32 23
1280 23 10 3C 18 EF D5 CD 6B
1290 D1 19 AE 77 CD 6B 10 E5
12A0 0E 05 06 08 3E C0 FD CB
12B0 FD CB 01 06 30 04 CB CF
12C0 CB D7 CB EF 77 23 10 DC
12D0 20 D0 06 08 3E C0 FD CB
12E0 CB CF CB E7 77 23 10 EC
12F0 04 ED B0 C3 25 11 6E 20

 36 37 38 51 57 45 52 54
48 4A 4B 5A 58 43 56 42
10 27 CD 40 10 11 E8 03
10 1E 0A CD 40 10 1E 01
F6 30 F7 C9 06 05 AF CB
CB 09 CB 09 30 02 F6 0F
F7 C1 C9 3A 23 10 26 00
14 17 CB 14 6F ED 5B 25
0C FE 02 28 32 EF 0D 59
6E 6F 74 20 65 6E 74 65
50 2E 43 2E 47 2E 20 52
73 73 2E 0D 00 DF 5B 2A
24 10 3E 80 32 23 10 DD
00 04 FD 19 EB 0E 40 C5
4C 10 C1 0C F2 DF 10 EF
08 2C 36 E4 10 FB 2C 36
C7 10 FB 19 36 C3 06 08
06 05 ED 52 36 F8 10 FA
2A 29 0C 77 47 E5 21 6A
72 2E 20 00 78 DF 68 CD
0C 21 10 00 19 EB E5 DF
06 04 CD 66 11 DF 6A 06
00 5E 23 56 23 E5 21 00
00 67 6F A7 ED 52 18 04
69 E1 10 DD C9 E1 22 29
28 15 11 01 00 FE 12 28
11 40 00 FE 14 20 34 2A
FE 07 20 04 26 09 18 19
7D E6 3F FE 2A 20 06 7D
F6 7E 32 24 10 3A 23 10
6B 10 06 10 36 00 23 10
DD 21 00 00 1E 00 16 00
09 09 36 20 09 36 20 09
C3 91 11 FE 50 20 08 DD
3B 20 08 1E C0 DD 21 08
21 0C 00 11 00 01 18 C0
08 16 80 BE 28 37 23 CB
2D 20 09 3A 23 10 32 24
3E 20 18 F2 FE 08 20 0B
10 18 19 FE 0D 20 E2 3A
10 D1 7A 16 00 19 DD E5
FD E1 21 AB 08 11 38 00
00 06 30 04 CB C7 CB DF
CB E7 FD CB 02 06 30 04
FD 23 FD 23 FD 23 19 0D
00 06 30 04 CB C7 CB DF
2A 25 10 11 00 00 01 00
74 68 61 74 20 63 68 61

Page 9

T1000 13D8 0 8 1
 1000 C3 06 13 4C 44 01 03 00

1010 7F FF FF FF 7F F8 FC 0E
1020 C0 FF FF FF FF 00 00 00
1030 FF 3F CF F7 F7 00 00 00
1040 00 80 C0 E0 F8 00 00 00
1050 00 00 00 00 00 00 00 00
1060 00 00 00 00 00 00 00 00
1070 00 00 00 00 00 00 00 00
1080 00 00 00 00 00 00 00 00
1090 00 00 00 00 00 00 00 00
10A0 00 00 00 00 00 00 00 00
10B0 00 00 00 00 00 00 00 00
10C0 00 00 00 00 00 00 00 00
10D0 00 00 00 00 00 00 00 00
10E0 00 00 00 00 00 00 00 00
10F0 00 00 00 00 00 00 00 00
1100 00 00 00 00 00 FF FF FF
1110 7E 1E 00 1E 7E FF FF FF
1120 FF FF FF FF FF F8 FF FF
1130 FF FF FF FF FF 00 FF FF
1140 FF FF FF FF FF 00 FF FF
1150 FF FF FF FF FF 00 FC FF
1160 FF FF FF FF FF 00 00 FF
1170 FF FF FF FF FF 00 00 C0
1180 FF FF FF FF FF 00 00 00
1190 FF FF FF FF FF 00 00 00
11A0 FF FF FF FF FF 00 00 00
11B0 FF FF FF FF FF 00 00 00
11C0 FF FF FF FF FF 00 00 00
11D0 FF FF FF FF FF 00 00 00
11E0 FE FF FF FF FF 00 00 00
11F0 00 70 7C 7F 7F 00 00 00
1200 00 00 00 00 00 1E 00 00
1210 00 00 00 00 00 FF FF 00
1220 00 00 00 00 00 FF FF 00
1230 00 00 00 00 00 FF FF 00
1240 07 0F 1F 3F 00 FF FF 00
1250 FF FF FF FF 00 FF FF 55
1260 FF FF FF F0 00 FF D5 FF
1270 FF FE E0 00 00 55 FF FF
1280 E0 00 00 00 00 AA FF FF
1290 00 00 00 00 00 AA FF FF
12A0 00 00 00 00 00 54 FF FF
12B0 00 00 00 00 00 28 FF FF
12C0 00 00 00 00 00 7F 9F DF
12D0 00 00 00 00 00 FF FF FF
12E0 00 00 00 00 00 7F 7E 70
12F0 00 00 00 00 00 00 00 00
1300 00 00 00 00 00 00 EF 0C
1310 EF 41 72 67 2E 20 00 DF
1320 10 36 8F 11 40 00 19 36
1330 05 10 ED 5B 0E 0C 01 00
1340 FB 2A 0E 0C 11 00 00 01
1350 26 04 2A 0E 0C 11 10 00
1360 F5 FF 19 F1 10 F8 E1 23
1370 25 20 E2 2A 0E 0C 11 00
1380 20 CD 21 38 09 11 40 00
1390 28 F6 ED 5B 0E 0C 21 10
13A0 3B 13 D5 E5 D1 1C 01 2E
13B0 20 02 36 21 35 C9 20 61
13C0 21 05 10 11 05 13 06 08
13D0 ED 52 19 38 F1 DF 5B 20

 03 03 03 03 03 03 03 78
EF EF EF EF EF EF EF 0F
00 80 C0 E0 F0 F8 FC FE
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
7F FF FF FF 7F 78 02 1E
FF FF FF FC C3 3F FF FF
FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF
FF FF FF DD CD D5 D5 D9
FF FF FF F3 ED E1 ED ED
FF FF FF F1 F7 F3 FD F1
FF FF FF F9 F6 F0 F6 F6
FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF
00 FF FF FF FF FF FF FF
00 FF FF FC FC FE FF FF
00 F0 FC 07 31 79 31 FF
00 00 00 00 00 00 80 F0
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 01 03
03 07 0F 1F 3F 7F FF FF
FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FE
FF FF FF FF FF FF E0 00
FF FF FF FF FC 00 00 00
FF FF FF E0 00 00 00 00
FF F8 00 00 00 00 00 00
80 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 3A 0B 0C FE 02 28 0B
6B DF 5B 21 0A 09 22 03
9F 19 36 AF 19 36 BF 21
03 ED B0 EB 36 00 23 10
00 04 ED B0 DD 2E 08 DD
0E 10 E5 06 10 A7 CB 1E
0D 20 EF 11 F0 00 19 DD
00 01 00 04 ED B0 DD 2D
E5 CD A2 13 E1 19 CB 4C
00 19 01 00 03 ED B0 C3
00 ED B8 7E 12 D1 E6 0F
6E 64 20 72 65 6D 6F 76
CB 06 1F 10 FB 77 23 A7
63 61 6E 20 74 68 75 73

Page 10

]LIST

1 REM: “ORBITS” BY S. HOPE.
5 LT=1:G=500:CLS:SC=3:CH=129
10 DIMS(LT),V(LT),A(LT),SN(LT),VN(LT),D(7),CH(2047)
20 FORI=0TOLT:INPUT”CO-ORDS FOR START (S,V) “;S(I),V(I):NEXT
30 INPUT”GIVE 2ND MASS COORDS”;M(0),M(1)
40 CLS:FORI=0TO7:READD(I):NEXT:DATA128,64,32,16,8,4,2,1
45 FORI=1TO40:X=48*RND(1):Y=15*RND(1):PRINT@X,Y,”.”;:NEXT
50 FORI=0TO31:DOKEI,0:NEXT:FORI=13TO17:READA:POKEI,A:CH(I)=A:NEXT
60 DATA28,62,62,62,28
70 PRINT@22,9,CHR$(128);@ 22,10,CHR$(129);
100 GOSUB1000:X=S(0)/SC:Y=S(1)/SC
102 J=2592+X/8-INT(Y/16)*64:IFPEEK(J)>100THENK=(PEEK(J)-128)*16:GOTO110
104 CH=CH+1:IFCH>255THENPRINT@0,0,”NO MORE CHARS”:STOP
105 K=16*(CH-128):FORI=KTO14+KSTEP2:DOKEI,0:NEXT
107 IFPEEK(J)=46THENDOKEK+7,6168
108 POKEJ,CH:PRINT@42,0,255-CH;
110 A=KBD:IFA<>THENTL=A-48
115 L=K+15-(YAND15):CH(L)=CH(L)ORD(XAND7):POKEL,CH(L):GOTO100
1000 R=0:R1=0:FORI=0TOLT:VN(I)=V(I)+A(I):SN(I)=S(I)+V(I)+A(I)/2
1002 X(SN(I)+S(I))/2:R=X*X+R:Y=X-M(I):R1=R1+Y*Y
1003 NEXT:IFR<1ORR1<1THENPRINT@0,0,”BANG”;:STOP
1010 A=-G/R/SQR(R):A1=-G/R1/SQR(R1)
1015 FORI=0TOLT:A(I)=A*(S(I)+SN(I))/2+A1*((S(I)+SN(I))/2-M(I))
1020 V(I)=(VN(I)+V(I)+A(I))/2:S(I)=(SN(I)+S(I)+V(I)+A(I)/2)/2:NEXT:RETURN
Ok

LIST

5 REM: A PROGRAM TO PLOT SIMPLE GRAPHS
10 CLEAR:DIMCH(2047),DT(7)
20 DATA 128,64,32,16,8,4,2,1
30 FOR N=0 TO 7:READ DT(N):NEXT
40 GOSUB 900
45 REM: THE SINE CURVE
50 FORX=0 TO 383:Y=120+100*SIN((X-191)/60)
60 GOSUB 1000:NEXT
70 FORT=1TO2000:NEXT
80 GOSUB900:FORX=0TO383:XS=(X-191.5)/30
85 REM: THE GRAPH OF SIN(X)/X
90 Y=120+100*SIN(XS)/XS
100 GOSUB 1000:NEXT
800 END
900 CLS:CR=127:FORX=0TO383:Y=120:GOSUB1000:NEXT
910 FORY=0TO239:X=191:GOSUB1000:NEXT:RETURN
1000 X1=INT(X/8):X2=X-8*X1
1005 Y1=INT(Y/16):Y2=Y-16*Y1
1010 M=2954+X1-64*Y1:C=(PEEK(M)-128)*16
1020 IF C>0 THEN 1060
1030 CR=CR+1:IFCR>255THEN RETURN
1040 C=16*(CR-128):POKEM,CR
1050 FORK=CTOC+15:POKEK,0:CH(K)=0:NEXT
1060 N=C+15-Y2:CH(N)=CH(N)ORDT=(X2)POKEN,CH(N)
1070 RETURN
OK

Page 11

PRINTERFACE
THE EPSON MX-80 F/T

by P. Whittaker

The Epson MX-80 is a nine-wire dot matrix printer which as supplied has a
standard Centronics 8 bit parallel interface. This can be connected directly to a
Nascom PIO, so all that you need to run the printer is the software to interface it to
the output ports. The first requirement is an initialisation routine to set the eight bits
of one port to output lines, for transfer of data to the printer, and to configure
the other port for control of the transfer. The simplest way to synchronise the
machines only needs the “busy’ line from the printer, which is low whenever the
printer is able to receive data, and a strobe signal from the computer, which is
taken low to tell the printer that data is to be read in.

In the standard Nascom port A of the PIO is addressed as port 4, and the

control port which specifies its configuration is port 6; similarly, data for port B is
output to port 5, and control words to port 7. A suitable PIO initialisation routine
is thus:-

LD A, £CF Control word to specify mode 3
OUT (6) , A Send this to port 6
XOR A Next byte sent to port 6 specifies which
OUT (6), A lines are outputs (0), which inputs (1)
LD A, £CF Now set port B to mode 3
OUT (7), A
LD A, 1 Use bit 0 as input (for ‘busy’ line)
OUT (7), A
LD A, 2 Set strobe line high
OUT (5), A

If you are using Nas-sys, the initialisation routine should end by storing the

address of the printer output program at £0C78, so that when the user I/O is
activated with command U output will be routed to the printer. With the earlier
monitors the corresponding address is £C4B, but the output program will have to
call the CRT routine. After a reset the output address will have to be reinserted, but
the PIO will not need to be initialised again.

The output routine has to test the ‘busy’ line before sending a character to

the printer; as soon as this line is low, the character is output at port A and the
strobe line is pulled to zero volts.

PUSH AF Save the character to be printed

TSTO IN A, (5) Read port B
RRCA Rotate bit 0 to carry flag
JR C TSTO Loop while bit 0 is high
POP AF Recover character
PUSH AF Resave
OUT (4), A Output to printer
XOR A Strobe signal to printer
OUT (5), A
LD A, 2 Reset strobe high
OUT (5), A
POP AF Recover character
RET End of routine

Page 12

You will now be able to get hard copy of machine code tabulations, Basic listings,
and source and object code from assemblers and disassemblers. If you use the
printer with Nas-Dis you will come across a strange problem - the machine goes into double-
print mode. The reason for this is that after accepting the user options Nas-Dis uses an
ESCAPE (£1B) to get to the beginning of a line, and then prompt "Go?". Unfortunately the
printer interprets ESCAPE/G as an instruction to double print. The only cures are to
modify Nas-Dis (for example, change to a lower case g), or to use a special printer output
routine for Nas-Dis which ignores ESCAPE/G.

If you try to use the pixel set in the Epson you will find that it is not

compatible with the Nascom pixels; in fact, it is the TRS 80 pixel set, using characters £80 -
£BF or £A0 - £DF (switch selectable). The following section of code carries out the
necessary conversion. The effect of each step in the process is listed on the right. An X
indicates that the value is not a copy of a specific original bit.

 Operation Current location of Carry Flag Zero Flag
 Original bits
 RRCA 07654321 0 X
 AND A 07654321 X X
 RRA X0765432 1 X
 RRA 1X076543 2 X
 RRA 21X07654 3 X
 JR NC, ANDA
 SET 5,A 21307654 3 X
ANDA AND A 21307654 X X
 RRA X2130765 4 X
 BIT 6,A X2130765 4 2
 JR Z, RES6
 SET 7, A 22130765 4 2
RES6 RES 6, A 2X130765 4 2
 JR NC, RRCA
 SET 6, A 24130765 4 2
RRCA RRCA 52413076 5 X
 RRCA 65241307 6 X
 RRCA 76524130 7 X

This completes the bit. manipulation; SUB £20 now shifts the characters to £A0 - £DF,
SUB £40 converts them to £80 - £BF.

The graphics ROM in the Epson also contains 64 Japanese characters, which can

be accessed when pin 7 of DIP switch 1, at the back of the printer PCB, is set to ON. These
characters are coincident with the pixels. If you send control code ESCAPE/5 (i.e., £1B
£35 in hex., 27 53 in decimal) subsequent characters in the graphics range will produce the
Japanese set; ESCAPE/4 selects the pixel set. Now, you may not want to print in
Japanese, but a bit of research into the software inside the machine shows that you could
easily reprogram these 64 characters to your own design.

At a first glance at the beautifully made P.C.B. there appear to be some chips

missing. There are three 24 pin sockets near the back edge of the board labelled 2716, but
only one of these contains a chip, which is a 2332! However, this 4K ROM can be
removed and replaced by two 2716s without any modifications to the board.

Page 13

The first 2K is part of the operating system of the printer (the rest of this is

located in a ROM contained in the 8049 processor chip which controls the printer);
the second 2K contains the data for the characters. The character is defined by 9
bytes in which. Just to be awkward, a 1 means leave a space and a 0 means print a
dot; each bit controls one of the matrix needles. So, what about the ninth needle
- after all the adverts make great play of the fact that this is a 9x9 printer. Well in
fact the ninth needle is only used for letters with descenders (g,p,q,y); the bytes
which define these letters are applied to the bottom eight needles. The letter J
uses the eighth needle, and all the other ASCII characters use only the top seven.

The pixels are not stored in the graphics section of the ROM, but are printed,

as blocks of 3 x 4 dots, by a special routine in the operating system. To print
pixels the machine does two passes per line, and also prints in one direction only, so
it is four times as slow as the bidirectional printing of ASCII characters. If you
program your own characters into the machine, you can access them as codes £80 -
£BF and design your output routine so that when it receives a character in this
range it prefixes ESCAPE/5, while a pixel character is prefixed by ESCAPE/4;
both characters should then be converted to the range that the printer is selected to
accept.

The printer has quite a range of control codes with which you can select the

print size, print density, line spacing, form length, and horizontal and vertical tabs.
Using pixels in the ‘condensed print’ mode you have a resolution of 264 points
across the 8 inch printing width of the Epson. However, there is a high-resolution
graphics version of this printer - the MX80 F/T 2. The software for this version is
contained in three 2716s, the third one replacing the 8049’s internal ROM! To do
this a single wire link is cut on the P.C.B., which pulls pin 7 of the 8049, the
External Access pin, to +5v. This forces the 8049 to ignore the internal ROM and
read program data from an external device. The F/T 2 has normal density
graphics, with a resolution of 480 dots/line, and double density, 960 dots/line.
When printing in high-resolution mode each bit of the data received controls one of
the top eight needles, with the most significant bit uppermost.

The F/T 2 has a couple of features which I would like to see on the F/T 1; it

deletes single characters on receipt of a Backspace (you can only clear the whole
buffer with the F/T 1) and it has automatic ‘skip over perforation’ (particularly useful
with Zeap, which has no paging capability). Unfortunately, you lose many of the
print options which are needed for ‘correspondence quality’ text, and you also have
no pixel characters. It would be nice to have a machine with the best features of
both versions without having to swap ROMs.

The MX80 is a very well designed machine - a great improvement in

appearance and performance on the TX 80. In fact the most serious faults I can
find are the DIP selection switches, which are only accessible by removing the
whole upper case, and the buzzer which indicates that the printer is out of paper -
this goes on for a full 30 seconds, and it can be infuriating (this fault has been
rectified on the F/T 2).

*** *** *** *** ***

Page 14

HANDS-ON!

bv Viktor

This series of articles aims to take the proud owner of a newly-
assembled, up and running Nascom from the intial stages of diplomatically
negotiated half-hours away from gardening and decorating to the point at
which you spend every evening and most weekends to the accompaniment of
"you think more of that machine than of me!". In the case of the single person
the machine meets with less direct opposition and the time to total obsession is
much shorter.

When you start using the computer everything is a mystery. Facts which
you need to know are hidden deep within a manual which has been written by
someone who is thouroughly familiar with all aspects of computing and who
has forgotten the depth of ignorance of the tyro. So here is an introduction to the
Nascom 2 written by someone who is still learning. I hope that I can bring the
manuals to life and ease the path for other beginners.

The keyboard and screen

When you switch on the computer, the screen is empty apart from a

message at the top left with a short flashing line underneath it. The
‘Message’ is the name of the operating system - the set of instruction within the
machine which tells it how to communicate with the outside world. There have
been several different operating systems for Nascoms; the first used with the
Nascom 2 was Nas-Sys 1, and the latest is Nas-Sys 3. If you go along to a
computer club you will find that these boring ‘commercials’ have been replaced by
much more enterprising expressions, from "Now what!" to phrases which are
quite unprintable. The operating system is often referred to as the monitor,
which is unfortunate, as the same term is used for the display device (also known
as a CRT or VDU – it sounds much more scientific than TV).

The flashing line is the cursor - it is there to tell you where anything you
type on the keyboard will appear on the screen. The cursor can be moved
about the screen with the cursor control keys - the four keys on either side of the
space bar. If you move the cursor and then type a letter, this letter will replace
the cursor, which will move to the next available space. lf you move the
cursor over letters that you have already typed, you will notice that it
does not erase these letters – it is a ‘non-destructive’ cursor. You can erase text
one character at a time with the “backspace” key if you hold down the shift key
and then press "enter” (also referred to as the "new line' or “return” key) you can
remove the whole line that the cursor is currently on, while shift/backspace
clears the whole screen. You can open up a space in a line of text by positioning
the cursor with the control keys until it is under the first letter to be moved and
then typing shift/cursor right. The whole line to the right of the initial position
moves to the right, and letters can then be inserted as required. Similarly,
shift/cursor left can be used to delete characters, the line to the right of the
deletion point moving to the left. In fact, the Nas-sys full-screen editing
facilities are excellent, and put many other copmputers to shame.

Page 16

The enter key has a very important function; it tells the computer to scan the

line containing the cursor and carry out any legitimate command on that line.
However, computers tend to be very fussy about the commands they accept; if you
put the command in the wrong place, or make a mistake in spelling or punctuation,
you will upset it and it will come back at you with its favourite message - Error.

Screen Layout

The Nascom uses a memory mapped display. This means that each

position at which a character can appear on the screen corresponds to a location
in a special region of the computers memory, often referred to as the VDU RAM
(the term ‘RAM’, and acronym for Acc ess Memory dating from the early days of
computing, is now used for any type of memory that can be modified directly by
the processor during the running of a program). To produce a character on the
screen you merely have to put the appropriate code into the correct location.
Special circuitry scans the display memory continuously and converts the data it
finds there into a signal which writes the characters on a TV screen. You can
change the contents of the display memory directly from the keyboard and watch
the characters appear. Clear the screen by typing shift/backspace, and then enter
M9E3, i.e., type M9E3 and then press ‘enter’. Make sure that the letter M is on the
far left of the screen, otherwise the computer will ignore it. If you have entered
the command to the computers satisfaction the cursor will jump to the next
line down the screen where 09E3 20 will be printed, with the cursor flashing at the
number 2. This shows that the current content of memory location 09E3, which
represents the middle of the screen, is 20 – the code for a space. If you now type
07, when you press ‘enter’ this character replaces the space and a small bell-shaped
figure with two legs projecting downwards appears in the middle of the screen. You
will have noticed that with this method of entry the position at which the change
occurs is independent of the cursor location.

The screen can hold 16 lines of 48 characters. The top line is special; you will
find that you cannot move the cursor onto the top line by means of the control keys.
Of course, you can put data directly into the memory locations corresponding to
the top line; if you modify the contents of location BE3 to 07 the little bell will appear
in the middle of the top line. If you try to move the cursor off the bottom of the
screen, you will find that the screen ‘scrolls’, that is, the cursor stays on the bottom
line but all the data on the screen is moved up one line. However, the contents of the
top line are unchanged, and the data in the second line is lost. The top line is used
for headings, program names, etc. The Nascom screen is not mapped to the
display memory in a straighforward way; the start of the memory corresponds to the
second line of the display, it runs down to the bottom line, and it is then followed by
the top line. It is thus usual to refer to the scrolling part of the display as lines 1 - 15,
and the top line as line 16, which can cause some confusion until you become
used to it.

Getting Basic

The microprocessor which controls the operation of your Nascom is an

electrical device, and it only responds to the patterns of electricity known as

Page 17

machine code. One way to communicate with your Nascom is thus for you to learn
machine code, but a simpler method is to make the computer do the ‘ thinking’
and use the Basic interpreter with which the Nascom is provided. A Basic interpreter
is a list of instructions, written in machine code, which tell the Nascom how to obey a
series of standard command words. Because most of the commands are simple
English words it is much easier to learn to control a computer with Basic than to learn
machine code. In the Nascom 2 the Basic interpreter is stored in a device known as
a read-only memory (ROM) because, while data can be read from this memory
when required, the processor cannot change the contents of the device by writing
new data to it.

After switching on the computer you start the Basic interpreter by

entering J. This is known as a ‘cold start’; it allows the interpreter to intialise an area
of memory, known as the Basic workspace, in which it stores information it
needs during the operation of the interpreter. After a cold start the machine displays
the prompt “Memory Size?” and then waits for you to tell it how many memory
locations are available to it. If you press enter without typing in the number of
locations the machine will work out the number for itself by searching through
possible memory locations from the end of its workspace upwards until it finds a
position that does not change when it writes to it. You only need to enter a value if
you wish to stop Basic using a particular region of memory.

Once you are in Basic you can enter programs, that is, lists of instructions,

from the keyboard or from tape. If you enter a line number, that is, any whole
number up to 65535, followed by a command or series of commands the whole line
will not be obeyed immediately, but it will be stored in the computers memory. Any
command entered without a line number is executed as soon as you press
“newline”. Should you come out of Basic and then return to it with another cold start
you will lose any program you may have entered. To get back to the interpreter
without loss of program you must use the ‘warm start’ command, Z.

At this point the ‘ reset’ button must be mentioned. When you press reset

you force the processor to stop doing whatever it is doing at the moment and obey
the instructions which begin at location 0, which is the start of the operating system.
Data in memory is not corrupted by a reset, and so you can use the reset button to
exit from Basic, and can then return to Basic with your program intact by entering
Z.

Finally, as a demonstration of the power of Nas-Sys screen editing in Basic,
try the following. Cold start the interpreter and type the lines:

 10 REM: NASCOM RULES!
 and then press ‘enter’. If you move the cursor with the control

keys to the line number, modify this to 20, and press ‘enter’ you will now have two
lines stored, as you can check by entering the command LIST. Line duplication
may seem to be of limited use, but in fact it can be an extremely effective method for
changing the order of lines when ‘debugging’ (removing errors) or modifying
complicated programs.

In the next article I shall delve further into Basic, and also cover a few points

on the use of the cassette interface.
** ** ** ** ** ** ** **

Page 18

N A S C O M G R A P H IC S

VERY HIGH RESOLUTION FOR NASCOM 2

380 x 220 individually addressable points

FEATURES :

• fully bit mapped from dynamic RAM
• software controlled
• software supplied for point-plot, line-draw,

 -block-shading and display control
• mixed text and graphics
• real time plotting
• display size variable to suit memory available

Price ... £55 + 15% VAT (post free)

E P R O M P R O G R A M M E R

FEATURES :

• programs: 3-rail : 2708, 2716
 and single rail : 2758, 2508
 2716, 2516
 2732, 2532

• EPROM type selected by plug-in modules - 3 modules
• supplied with simple wiring diagrams for all EPROM types
• driven from NASCOM 1 or 2 PIO
• powered from NASCOM and transformer (supplied)
• software supplied for READ / PROGRAM / VERIFY

** CAN BE USED WITH OTHER MACHINES WITH 2 PARALLEL PORTS

Price ... £ 63 + 15% VAT (post free)

Both products built & fully tested supplied with comprehensive documentation and full
instructions for simple installation

Send SAE for free data sheets

AVAILABLE NOW direct from:-

Page 19

SNOWDINGER

by Dougal

If you have a Nascom 1, you will have noticed that certain processor
activities cause a lot of on-screen disturbance patterns of apparently random
white speckling all over the TV screen. You may, of course, have modified your
machine by fitting the "snow plough" suggested in the first two issues of INMC
news, or you may have a Nascom 2 (or a Video Genie, an Atom, etc., - they all seem
to have similar problems). In that case you will still notice on-screen disturbances
in the form of short black lines chopping up the displayed information. On a mainly
black screen this can just about be tolerated, but with any sort of graphics
capability all that the "snow-plough" approach succeeds in doing is to substitute
black "snow" for white.

This is a great pity because a clean display is so much more satisfactory, and

there are, in fact, several ways in which this can be achieved. The method detailed
in this article is economical, and it has been success-fully implemented by a number
of Nascom owners in my local club (even O.N.J. managed it).

The disturbances are, of course, caused by the need for two functionally

independent units - the display logic and the processor - to access the same
memory area: the V.D.U. RAM. The display logic cannot be kept waiting for the
obvious reason that that the televison line scan just keeps right on going, so in the
Nascom designs (and many others) the processor grabs the address and data
busses to make its access, and whatever the display logic is trying to do at that
time is simply not done. Either, with an unmodified Nascom 1, it is fooled
completely, and proceeds as if the data that the processor has just accessed is the
data that it was itself trying to access - in which case it looks up in the character
generator ROM an "appropriate" bit pattern for the line currently being displayed,
and merrily puts that up on the screen -or, with a Nascom 2 or a "snowplough", it
blanks out any information from the display for a period covering the disturbance,
which is fine if nothing is supposed to be displayed at that position on screen, but
not otherwise.

So, what approaches can be taken to provide a final solution - a good, clean

display with no disturbances whatsoever? Three solutions come to mind, all based
on the principle that if the display logic must not be disturbed, then the processor
will have to be.

1) A software solution. For about 4 milliseconds in every 20, nothing will

show on the screen because this is the frame-blanking time. All the screen
updating can be done during this period, as follows. Two "monitor" routines are
needed, one entered by means of a frame-sync interrupt, the other entered by a
user call. The interrupt routine is given sale and exclusive authority to manipulate
the contents of the video RAM, which it does by working down and emptying a list of
demands. These are prepared for it by the other routine, which makes an entry in
the demand list for every call from a user program.

2) A hardware solution. Use "wait-state" logic to permit processor accesses

into V.D.U. ram only during the line-blanking time, which is 16 microseconds in every
64. Of course, during frame-blanking accesses need not be delayed.

Page 20

3) Another hardware solution. The display logic accesses the V.D.U. RAM once
per microsecond - it is Just possible to arrange for two accesses in every
microsecond, and hand over alternate ones to the processor when it needs
them. Wait state logic can then be used to synchronize the processor with these
time slots.

 Now all these are perfectly feasible solutions, but each has its own peculiar

advantages and disadvantages. Approach (1) for example would need a new
version of Nas-sys, and would meet with displeasure from all those who like the
flexibility of memory-mapped display (no more Basic pokes to screen for
example).

 Approach (2) involves the processor in waits of up to 48 microseconds, and

also has some wrinkles associated with the fact that the first character displayed on a
line is actually being accessed 2 microseconds earlier. This approach formed the
basis of a brave but unfortunately over-simple attempt in issue 3 of INMC 80 -
problems such as this cannot be tackled just with Boolean algebra. The best tools
are sheets of squared paper on which waveform diagrams can be drawn and
redrawn, an the detailed information provided by the chip manufacturers on how to
make Z-80s Jump through hoops.

 A solution to approach (3) is presented here. It too has its disadvantages:

early Nascom 1’s may have V.D.U. RAMs which are too slow to permit two
accesses per microsecond. As it is, the modification is so simple that it is worth
trying anyway - if the result produces spurious display misbehaviour then your RAMs
are too slow, in which case have a go at approach (2) (if you do, be sure that you
completely understand the display mechanism, prepare careful timing diagrams,
and study the Z-80 manual on T-states and access cycles),

 Another disadvantage is that the Z-80 will no longer be able to execute code

from the V.D.U. RAM - which is a daft thing to want to do anyway. (This quirk
occurs because, for reasons best known to the chip designers, M1 cycles - code
accesses - have a different timing requirement to all others. This already creates all
sorts of problems on Nascoms, such as the need for wait-states to access
EPROMS on 4MHz machines.)

 The advantages of approach (3) are, however, persuasive. Unlike (2), the

maximum wait of the processor is one microsecond - undetectable in practice. It is
extremely simple - there is little more logic involved than was required for
the "snowplough". The 2MHz and 4MHz versions are similar enough to permit a
speed selection switch, for those of you whose reflexes are not up to landing a
moon-rocket at 4 MHz, and don’t want to modify software.

 The waveform diagrams contain all of the theory of operation. One very

important point to realise is that the processor clock is the inverse of that used
by an unmodified Nascom - there is an extra inverter in the signal path. This is
essential to ensure that the "wait state" generator is sampled by the Z-80 at the only

Page 21

suitable time - in order to complete the access by the end of the 500 nanosecond
processor time slot.

Two other signals are generated. One (RVSEL) is intended to gate the

address and data steering logic and permit a "read-enable" to reach the RAM.
The other (WVSEL) is a signal timed to be contained within this, used to permit
a "write enable" to reach the RAM, with satisfactory data set up and hold timing. A
small capacitor can be fitted to lengthen this signal slightly - this is only needed for
slow RAMs and is included because some of the early Nascom 1’s might then be
able to use this approach.

On the implementation given, these signals are generated twice, for two

different address fields. One is the V.D.U. RAM, but some readers will be interested
in the possible application of the other. The club mentioned earlier has become
dissatisfied with the limited character set imposed by ROM-based graphics, so a
programmable character generator is being included as part of a P.C.B. we are
developing (The resulting board will be 8"x8", Nasbus compatible, and also
contain 64K of RAM and a few other bells and whistles, for those interested). Now
the immediate use of programmable graphics is to download special characters
chessmen is a good example - from tape along with the software that uses them.
After that, however, is the rather more fascinating possibility of using this
programmability dynamically to produce smooth movement: watch your Klingons
grow in size in your starship viewscreen as they sweep in to the attack.

Our P.C.B. uses separately addressed RAM, which is expected to be regularly

accessed by both the video display logic and the processor, so the same conditions
exist as for the V.D.U. RAM. Not surprisingly, the same solution to on-screen
disturbances also applies; hence the second pair of signals. Since they require
no additional I.C.s for their generation, I have included them in the diagram.

The instructions constitute a modification for Nascom 1, for which I won’t

apologise: there are a lot of you, and also you have lived with the problem longer!
Nascom 2 owners should have little difficulty in working out their own version, but if
there is sufficient demand then another article is always possible. To assist with
installation a sketch is included of the veroboard layout as fitted to my own
machine. It will be noticed that the connections to IC31 are made by adding
"extension legs" from the pins of the 7406 down through the veroboard. This
makes for space saving, wiring minimisation, and a certain amount of
mechanical support all in one, so is to be recommended. These extension legs
were taken from a broken DIL headers I suggest that you experiment and search
your Junk box.

INSTALLATION
In the instructions which follows "Lift IC xx pin y" means: carefully remove IC xx from
its socket, with a pair of thin, flat-nosed pliers bend pin y horizontal so that it no
longer makes contact with the socket, and replace. "Connect pin of IC xx/y to ..."
means: solder one end wire directly to the pin bent horizontal in a "Lift" instruction.

Page 22

"Connect pad of ICxx/y to ..." means: solder one end of wire to any suitable point on
the P.C.B. track that pin y used to connect to, before it was lifted. Plated through
holes are ideal for such connections.
"Connect IC xx/y to . .." means: solder one end of wire to any suitable point on the
P.C.B. track that pin y connects to.

Preliminary: Remove "snowplough" if fitted and restore board to its original state.
1): Remove IC 31. This 7406 may be used, if desired, on the veroboard, or
retained in case the 2102’s are too slow
2): Lift IC 11 pin 5. Connect pin of IC 11/5 to IC 11/4
3): Lift IC 45 pin 13
4): Lift IC 36 pin 6
5): Plug veroboard into IC 31, ensuring that the 7406 has the same orientation as
originally. The major part of the board fits over the group of R’s and C’s adjacent to
IC 31, and between the PIO and the character generator. Subsequent instructions
assume that the switch is already wired in, and that wires using the colour code on
the logic diagram have been soldered to the veroboard.
6): Connect pin of IC 45/13 to WVSEL (black)
7): Connect pin of IC 36/6 to VDUSEL (blue)
8): Connect pad of IC 36/6 to RVSEL (white)
9): Connect 1MHz pin adjacent to IC 19 to 1MHz (brown)
10): Connect 2MHz pin adjacent to IC 19 to 2MHz (red)
11): Connect 4MHz pin adjacent to IC 19 to 4MHz (yellow)
12): Connect IC37/24 to WAIT (green)

NOTE - Those of you who are using Nascom buffer boards are currently driving
their processors with a different oscillator to the on-board one driving the V.D.U,
logic, this being Nascom’s solution to a bus skew problem. The modification
presented here cannot tolerate independent oscillators since it uses a
synchronisation technique, and continues to use the Nascom 1 on-board oscillator
to drive the Z-80. The buffer oscillator must be diconnected in its entirety from
both the Nascom 1 interface, pin 38, and the Nasbus, pin 5. The latter, if
connected to pin 11 of the 7406 on this modification, produces the same solution to
skew as the buffer implements - i.e., two gate delays. If you don’t like flying leads,
and are prepared to do some P.C.B. track cutting, isolate the Nascom 1 interface pin
38 and use this as a method of linking the signal from the Nascom 1 to buffer and
hence to Nasbus.

When you have carried out the above modifications, try the system at 2MHz.

Any screen misbehaviour will probably show with "tabulate", but experiment with
several programs making dynamic use of the screen. If misbehaviour is seen, fit
a 150 pf capacitor between pin 8 of the 7406 on the veroboard and ground. If the
system still doesn’t work properly then your V.D.U. RAMs are too slow - either
get some faster 2102’s or try an alternative suggested in the text. If all is well, and
providing that you are quite certain that your system can run at 4MHz i.e., it did so
before installing the modification - then carry out the same tests at the higher speed.
Hopefully, you now have a clean screen without any disturbances.

Page 23

 WAVEFORM DIAGRAMS

4 MHz

2 MHz

1 MHz

NECESSARY
�
 � �

DISPLAY ACCESS
PERIODS THIS PERIOD IS USED

FOR PROCESSOR ACCESS

2 MHZ VERSION:

CONTROL GATE

VDUSEL 1 2

 2

WAIT 1 �

 2
RVSEL 1 #

WVSEL *

4 MHZ VERSION:

CONTROL GATE

VDUSEL 1 2 3 4

 4

WAIT 1 2 3 �

 2,3,4
RVSEL 1# 1,2,3 4

WVSEL 1,2,3 4 *

NOTES 1,2,3,4 - DIFFERENT STARTS OF Z-80 ACCESS CYCLE WITH RESPECT TO 1 MHZ

 -THIS POINT IN TIME THAT THE ‘WAIT’ SIGNAL IS SAMPLED BY THE Z-80

 * -EFFECT OF ADDING CAPACITOR TO EXTEND WRITE ACCESS – NOT NORMALLY

NEEDED

 � -THIS ENSURES THAT ‘WAITS’ GENERATED FROM DIFFERENT SOURCES DO NOT
DISTURB THIS SYNCHRONISATION LOGIC.

 # --THIS ‘PRELIMINARY PULSE ON RVSEL HAS NO EFFECT SINCE CYCLE IS NOT
COMPLETE, IT IS DURING AN UNUSED PROCESSOR ACCESS ‘SLOT’, AND THERE IS NO
CORRESPONDING WRITE GATE WVSEL

Page 24

BASIC FORM OF MOD

NASCOM – 1 IMPLEMENTATION

NOTE: Gates Marked ‘OC’ are Open-Collector Outputs. WAIT Must be Driven by Such a Gate,
 to allow Common-Collectoring with Other Wait-State Generators

Page 25

Page 26

RUBIK CUBE DISPLAY

by J. K. Richardson

At nearly all the club meetings I have been to recently someone has been playing
with a Rubik cube. The program below displays a front and rear view of the cube.
The program accepts the standard notation for the cube (using Left, Right, Front,
Back, Up, Down for the faces); thus L1 or L Newline rotates the left face 90 degrees
clockwise, L2 rotates it 180 degrees, and L3 or L’ rotates it 270 degrees. You can
backstep through a sequence of moves with BS, and Jump directly to an
unscrambled cube with shift/newline. The program is the first step towards a
program which solves the cube - I should be pleased to hear from anyone who has
already written such a program!

TC80 FE0 0 10 1
 0C80 C3 47 0E 55 09 11 09 CD 08 91 08 55 08 99 08 DD 08 19 09 D5 08 94 09 14

0C98 0A 94 0A 50 0A 0C 0A 8C 09 0C 09 50 09 D0 09 96 09 5A 09 1E 09 9E 09 1E
0CB0 0A 5A 0A 96 0A 16 0A DA 09 AF 09 F3 09 37 0A 73 0A AF 0A 6B 0A 27 0A EB
0CC8 09 2F 0A 6E 09 AA 09 E6 09 66 09 E6 08 AA 08 6E 08 EE 08 2A 09 70 09 F0
0CE0 08 70 08 B4 08 F8 08 78 09 F8 09 B4 09 34 09 02 06 05 03 03 04 06 01 01
0CF8 05 04 02 06 02 03 05 04 03 01 06 05 01 02 04 55 4C 46 44 52 42 52 55 42
0D10 49 4B 27 53 20 43 55 42 45 8E 0F 79 D6 03 30 02 C6 06 4F C9 7A CD 35 0D
0D28 CD 1B 0D E5 06 00 21 07 0D 09 56 E1 C9 E5 21 0C 0D 01 06 00 ED B9 E1 C9
0D40 21 0A 0B 06 30 22 29 0C 36 20 2C 10 FB C9 DD 7E 00 87 87 87 DD 86 00 87
0D58 D5 5F 16 00 FD 21 71 0C FD 19 D1 DD 23 C9 79 87 87 87 81 87 16 00 5F DD
0D70 21 83 0C DD 19 06 08 DD 6E 0C DD 66 0D 56 DD 6E 0E DD 66 0F 5E DD 6E 00
0D88 DD 66 01 7E 72 53 5F DD 23 DD 23 10 F0 79 87 87 5F 16 00 DD 21 EF 0C DD
0DA0 19 DD E5 CD 4E 0D FD 6E 00 FD 66 01 56 CD 4E 0D FD 6E 08 FD 66 09 5E 72
0DB8 CD 4E 0D FD 6E 0C FD 66 0D 56 73 CD 4E 0D FD 6E 04 FD 66 05 5E 72 DD E1
0DD0 DD E5 CD 4E 0D FD 6E 00 FD 66 01 73 FD 6E 0E FD 66 0F 56 CD 4E 0D FD 6E
0DE8 06 FD 66 07 5E 72 CD 4E 0D FD 6E 0A FD 66 0B 56 73 CD 4E 0D FD 6E 02 FD
0E00 66 03 5E 72 DD E1 DD E5 CD 4E 0D FD 6E 0E FD 66 0F 73 FD 6E 0C FD 66 0D
0E18 56 CD 4E 0D FD 6E 04 FD 66 05 5E 72 CD 4E 0D FD 6E 08 FD 66 09 56 73 CD
0E30 4E 0D FD 6E 00 FD 66 01 5E 72 DD E1 CD 4E 0D FD 6E 0C FD 66 00 73 C9 EF
0E48 0C 00 21 8E 0F 22 19 0D 21 0D 0D 11 DC 0B 01 0C 00 ED B0 21 83 0C 0E 06
0E60 11 07 0D 1A 13 D5 06 09 5E 23 56 23 12 10 F9 D1 0D 20 F0 CD 40 0D EF 4D
0E78 6F 76 65 3A 20 00 CF 00 00 FE 1B 28 C2 FE 08 20 21 2A 19 0D 2B 11 8E 0F
0E90 ED 52 19 38 DE 7E CD 35 0D 1E 31 28 06 5F 2B 7E CD 35 0D 57 3E 64 93 5F
0EA8 18 0D CD 35 0D 20 C4 57 F7 00 00 CF 00 00 5F D5 FE 0D 28 2F FE 31 28 2B
0EC0 FE 32 28 24 FE 33 28 1D FE 27 28 19 FE 41 20 08 CD 66 0D CD 1B 0D 18 13
0ED8 FE 53 28 03 D1 18 94 CD 66 0D CD 1B 0D CD 66 0D CD 66 0D CD 66 0D 2A 19
0EF0 0D D1 D5 11 8E 0F A7 ED 52 19 D1 28 4B 2B 7E CD 35 0D 06 01 28 03 47 2B
0F08 7E 23 BA 28 06 05 28 38 23 18 35 2B 7B FE 53 28 04 FE 41 20 1B 78 3C E6
0F20 03 20 0E CD 24 0D 7B 1E 01 FE 41 28 C5 1E 03 18 C1 F6 30 23 77 23 18 EB
0F38 80 E6 03 2B 28 2A 23 3D 28 26 C6 31 23 77 18 20 72 7B FE 53 20 08 1E 33
0F50 23 CD 24 0D 18 F2 FE 41 20 04 1E 31 18 F2 E6 03 FE 01 28 04 F6 30 23 77
0F68 23 11 BE 0F A7 ED 52 19 30 03 22 19 0D 21 4A 0B CD 43 0D 21 8E 0F ED 5B
0F80 19 0D A7 ED 52 19 CA 73 0E 7E F7 23 18 F4 4C 33 76 69 6E 67 20 74 6F 20
0F98 74 68 65 20 A0 6C 65 66 74 2E 20 49 6E 20 66 61 63 74 2C 20 74 68 65 20
0FB0 4E 61 73 2D 73 79 73 20 66 75 6C 6C 2D 73 63 72 65 65 6E 20 65 64 69 74
0FC8 69 6E 67 20 A0 66 61 63 69 6C 69 74 69 65 73 20 61 72 65 20 65 78 63 65

Page 27

NAS-SYS MONITORS

by J. Haigh

INTRODUCTION

The purpose of this series of articles is to dissect the latest Nascom monitors,
Nas-sys 1 and Nas-Sys 3, partly to provide a backcloth for a discussion of machine
code programming; and partly because you can only use monitor routines effectively
when you understand them and I hope to gain understanding by writing the articles.

Anyone who has used other microcomputer systems will realise that the Nascom
monitors in general are very powerful for their size. This does not mean that they
should be regarded as sacrosanct - ideally the standard monitor supplied with your
machine should be regarded as the starting point for a truly personal system.
Tampering with monitors has a peculiar fascination; you usually have a strictly limited
space in which to fit the routine you are rewriting, and it always seems to be too short.
In the articles I shall try to stick to the authorised versions of Nas-Sys , but I shall
probably suggest the occasional ‘ improvement’. I hope this will encourage people to
write in with their own modifications, or at least to write and say why mine are wrong.

I shall assume that the reader is familiar with the commoner ‘buzz words’ for

computing and knows what hexadecimal code is (if you have never heard of
hexadecimal, you should read the series Teach Yourself Z80 in INMC 80). If there is
anything you don’t understand, you can always write and ask.

THE RESTARTS

The Z80 has a set of eight single-byte instructions which call subroutines on
page zero.

HEX. Assembly Address Nas-Sys
Code Name Called Function

£C7 RST £00 £0000 Resets the system
£CF RST £08 £0008 Waits for an input character
£D7 RST £10 £0010 Relative call routine
£DF RST £18 £0018 Access to Nas-sys routines
£E7 RST £20 £0020 Breakpoint code
£EF RST £28 £0028 Print a character string
£F7 RST £30 £0030 Output the character in A
£FF RST £38 £0038 Delay determined by value in A

RST 0 can be used on any monitor to reset the system at the end of a program,
but any information on display will be lost, so its value is limited.

The second restart is the Nas-sys equivalent of the CHIN routine (CD 3E 00) in
T4 and the earlier monitors; it uses a subroutine in the monitor to scan continuously
through a table of routines until one of them receives an input. The address of the
table is stored in the workspace at £0C75, and on initialisation this points to a
keyboard and a serial input routine. The user can extend or change the table with
the U and X commands, or he can provide his own input table. If one of the routines
in the table sets the carry flag, subsequent routines will be skipped.

Page 28

The Nas-Sys 3 table contains a repeat keyboard routine, which is not available under
Nas-Sys 1.

The next two restarts (relative call, £D7, and subroutine call, £DF) both use the
byte following the restart code to determine the address of the routine they are
accessing. In a relative call the second byte is used as an offset to the routine being
accessed, and as in the case of a relative jump instruction the distance is measured
from the code following the second byte. If the offset lies in the range £80 - £FF the
subroutine will precede the instruction calling it.

.
FB
FC
FD
D7 XX
00
01
02
03
.

Negative offsets
< Position of relative call
< Distances measured from here
Positive offsets

By using the relative call routine you can write programs that are completely

relocatable - that is, they will work at any address without modification. This is
particularly useful for programs that are to be stored in EPROM, as you can plug
the device in any spare socket. Of course, you don’t get this for nothing; the routine
has quite a lot of software manipulation to carry out, and consequently it is much
slower than a normal subroutine call. So, if you want a program to run as quickly
as possible you will have to avoid relative calls in the critical parts of the code.

The subroutine call, £DF, uses the second byte to access a table which contains

the addresses of monitor subroutines. In Nas-sys 3 this table starts at £0782; the
first 26 addresses are the routines for the single letter commands. Only F and L are
unused, and the table contains the address of the error-message routine for these
letters. If you have an EPROM blower you can add extra commands by using these
letters, or by replacing any of the standard commands that you don’t use. As an
example, here is a routine which compares two blocks of memory and list four lines
of each block whenever it finds a difference.

1B DEC DE ; On entry DE and HL point
2B DEC HL ; to the start of the blocks
13 CPLOOP INC DE ; Increment the block pointers
23 INC HL
1A LD A (DE) ; Get byte from block 1 in
BE CP (HL) ; Is it the same as block 2?
28 FA JR Z CPLOOP ; If so, keep going
D7 0C RCAL TAB ; Tabulate first block
EB EX DE HL ; Swop the pointers to the blocks
D7 09 RCAL TAB ; Tabulate the second block
EB EX DE HL ; Swop pointers back
CF RST 8 ; Wait for user to press any key

Page 29

FE 1B CP £IB ; Is it an ‘escape’ ?
20 EF JR NZ CPLOOP ; If not, look for next difference
DF 6A SCAL CRLF ; End of routine; scroll screen
C9 RET ; and return to monitor
E5 TAB PUSH HL ; Save current poition of
D5 PUSH DE ; pointers to blocks 1 and 2
01 F0 FF LD BC -16 ; Tabulate from 16 bytes
09 ADD HL BC ; before difference
54 LD D H ; Put this address into DE
5D LD E L
01 20 00 LD BC 32 ; Tabulate to 16 bytes
09 ADD HL BC ; beyond the difference
EB EX DE HL ; Now get 1st address in HL, 2nd in DE
DF 54 SCAL "T ; Call the tabulate command
D1 POP DE ; Recover pointers
E1 POP HL
C9 RET ; End of subroutine

You will see that the routine is relocatable; to incorporate it into your monitor as
command F you must put the start address at £078C in Nas-Sys 3, at £0792 in Nas-
Sys 1. To compare blocks of memory starting at £1000 and £2000 you simply
enter F1000 2000. When one of the command letters is entered the first three
hexadecimal values following the letter are held in HL, DE and BC, but if you want
to run the program under the E command, entering EXXXX 1000 2000, you will
have to prefix a routine to pick up the block addresses; for examples:-

2A 0E 0C LD HL (£0C0E) ; Get block 1 address in HL
ED 5B 10 0C LD DE (£0C10) ; and block 2 in DE

XXXX will be the start address of the modified program. Also the return

instruction at the end of the program (not the one at the end of the subroutine)
should be changed to DF 5B, SCAL MRET. Because this means replacing a
single byte code by a two byte one you will have to move the subroutine down one
byte and change the values in the relative calls. However, you can avoid this by
using C7, RST 0, to get back to the monitor.

There are 34 remaining subroutine calls in Nas-Sys 1 (DF 5B - DF 7C). These

cannot be entered as commands from the keyboard, but can all be used in
programs. Nas-Sys 3 has 3 extra subroutine calls, including the repeat keyboard
facility.

 Restart £20, £E7, is used by the breakpoint routine to halt the execution

of a program and display the current state of the processor. When a breakpoint
is entered at address XXXX by entering BXXXX, the address is stored in the
workspace at £0C23. The next execute command saves the code it finds at
XXXX and then, providing that the address entered was not zero, it inserts a
breakpoint restart. When the program arrives at this restart the original code is
replaced, and the contents of the registers are saved in the workspace (from
£0C61 to £0C6C) and displayed on the screen. The program then returns to the
monitor to wait for the next command. If you now enter E without specifying
an address execution continues at the replaced code; once again restart
£E7 will be inserted (because £0C23 still contains address XXXX) and if

Page 30

the program returns to this point the register display will be repeated.

But if the restart code is inserted when the Execute command is entered, why

doesn’t the program stop immediately when you try to continue after a breakpoint?
In fact the £E7 is not inserted until one instruction has been carried out, as the
following simple experiment shows. Enter the following code at £0C80:-

0C80 00 NOP ; No operation
0C81 23 INC HL ; HL register pair incremented
0C82 C3 80 0C JP £0C80 ; Jump back to beginning

Press reset, then enter BC81 followed by EC80. The register display will show

the contents of HL to be 0000; this is because the execute command picks up the
values in the register save area of the workspace, and these bytes are zeroed
by a reset. Now press reset, enter BC80 and then EC80. HL will be 0001; the
restart was not inserted until the first instruction (NOP) had been executed, so HL
was incremented before it came back to the breakpoint. If you insert £E7 directly in
the program at £0C80 using the modify command, the program will break
immediately on execution. The main use of this restart is in ‘debugging’ – tracing
faults in programs that don’t work properly. You can also use it as a single byte end
to a program when you want to know the contents of the registers.

The next restart will be familiar to all Nascom users, as it has remained

virtually unchanged from the earliest monitor. It is the ‘print string’ routine, £EF, which
outputs the characters following the code until a zero is reached. The routine can
handle control codes and graphics characters as well as the standard ASCII
codes. The bytes in the string are loaded successively into the A register, and
are then output by restart £F7. At the end of the routine the A register always
contains 00, the byte that marks the end of the string.

The output restart, £F7, operates in a similar way to the subroutine called by

the input restart; that is, it accesses a table of routines, the address of which is
stored at £0C73. On initialisation this is set to use only the standard CRT routine,
but the user can extend the table with the U and X commands, or can provide his
own routine table. As in the case of the input restart, if one of the routines in the
table sets the carry flag subsequent routines will not be used.

Finally, restart £FF produces a delay depending on the value in the A register

when the restart is called. When A is one, the delay at 4Mhz, including the call and
return, is 5.2 microseonds, while the maximum delay, produced when A is zero,
is 2.7 milliseconds. Of course, the times are doubled with a 2Mhz clock rate.

That completes the Z80 restarts; in the next article I shall deal with some of

the individual subroutine calls.

* + * + * + * + * + * + * + * + *

Page 31

NEWS FROM THE CLUBS

I hope that we get enough feedback to make this a regular item - not just a

boring list of names and addresses, but what goes on at the meetings, details of
any pet projects the clubs are working on, etc. So will members of clubs please
twist the secretaries’ arms and get them to send as much information as possible.

The Mid-Sussex Microcomputer Club have sent in samples of their very

impressive Newsletter. The club caters for all micros, but if the contents of the
Newsletter are anything to go by it has a very strong bias towards Nascoms. The
next two meetings of the club will be on Friday, August 21st, and Wednesday,
September 16th, at Ardingly College. Further details from the secretary, B. Langton,
Tain, Broadwater Lane, Copsale, Nr. Horsham, W. Sussex, RH13 6QW.

The Merseyside Nascom Users Group, which claims to be the largest Nascom

club in the world, meets on the first Wednesday of each month in the Mona pub in
Liverpool (near Pierhead). They are planning to start a regular newsletter in the
near future.

Bristol Amateur Radio Society Computer Group, which meets on the last

Tuesday of the month at the University Settlement, Dulcie Road, Barton Hill,
Bristol, apparently consists almost entirely of Nascom enthusiasts. Further details -
from Terry Rowe, Bristol 559398.

There is also the Nascom Group of Bristol Computing Club, run by Noel

Wright, 3, Brighton Road, Redland, Bristol, Tel. 36552.

The Cornwall Amateur Radio Society Computer Group has a good proportion of

Nascom users. Details from the president, A.H.Hammett, 1, Rose Hill, Ladock,
Truro, Tel. Grampound Road 882758

Nottingham Micro-Computer Club meets monthly at Trent Polytechnic. They

have sent us a copy of their Newsletter, which contains an interesting list of useful
routines in the Nascom ROM Basic. Membership costs £5.00 per annum , Students
and OAPs half price, family membership £7.50. Contact the secretary, K. S.
Swainson, 9, Brayton Crescent, Bulwell, Nottingham, Tel. 0602 - 751742, or send a
sae for a membership form to R. Brumpton, 182, Lowdham Lane, Woodborough,
Nottingham, NG12 6DN

The South Yorkshire Personal Computing Group meets in the Department of

Applied Science, Sheffield University (St. Georges Square) on the 2nd Wednesday of
the month, at 7.30 pm.

The Kirklees Computer Club has a strong Nascom contingent. They hold

informal meeting every Monday in the White Swan pub, Kirkgate, Huddersfield. A
newsletter is to be produced, and the production team is headed by a Nascom
owner.

Page 32

Studying maths at ‘O’ level or above?
These routines will be of interest!
Plotting user defined function, with
‘zoom in & out’, alter scales etc.
Simultaneous Equations up to order
32 Calculus functions evaluation, 1st,
2nd & 3rd derivatives, integration. Non
linear equations solves quadratic
equations Factorials (up to 33)
permutations, combinations Vector
Routines manipulates 3 dimensional
Vectors £7.95

INVASION EARTH with INCREDIBLE
SOUND EFFECTS (MC/G) £10.95
SOUND CHIP – Program up to 3
Independent channels with music &
Sound effects! Data sheet incl. £8.50
SOUND CHIP INTERFACE BOARD
Designed to interface between the PIO
& the chip. Ready built plugs straight
onto PIO Nascom 1 connectors
available. Sound generation illustrated
in MC & Basic (chip not incl.) £13.50
DEMO PROGRAM (MC) 1st mode direct
Entry to chip register making experiment
-ation simple. 2nd mode turns keyboard
into 7 octave piano giving state of
registers and notes played £5.59
Data Manual (60 pages) no VAT £2.25

N A S C O M
 1 & 2

Fast M/C space game, featuring diving
Galaxian spacecraft. 10 speeds from
Good To impossible No barriers for
 protection Hi Score display £8.95

Speed up your display of pixel graphics
29 Routines called from BASIC.
Manipulate 2 Screen images & then
update your VDU Changes appear
instantaneous. Extensive Examples and
instructions supplied £8.95

Issue 1 NOW AVAILABLE
Issue 2 COMING SHORTLY
WHY NOT ORDER BOTH NOW only
95p Each
“Hands on”, Nas-sys 3 revealed &
Interfacing Printers These series cont.
& much more valuable information
Club News letters your points of view,
questions & answers

 Super adventure game PLUS exciting
 Graphics. Fight the monsters & Demons
 in real time. Swords flash, Arrows fly &
 spells home in Endless Hours of
 enjoyment Save on tape £8.95

 8K of incredible M/C An interactive game
 ‘par excellence’ Torpedo the moving
 snake-like sea serpents & the marauding
 killer whales 5 levels & special missions
 with almost infinite skill settings £5.95

 WIDELY USED VERSION of this
 Computer aided learning language. Being
 adept at matching long strings, it has
 considerable advantages over BASIC
 in interactive learning projects £12.50

 For cassette-based systems.
 PAYROLL, SALES & PURCHASE
 LEDGERS, PRICE LISTS etc. NOW You
 can write them! Save complex data Files
 on cassette any combinations of Strings,
 string variables, string arrays, Constants,
 expressions, variables or Arrays.
 Definable block size. At 2400 BAUD
 using 1k blocks, 1000 numbers Can be
 stored / accessed in less than 1 min.
 Comprehensive manual & circuit for
 optional automatic cassette drive control
 supplied £17.50

 * * THE KEYS OF KRAAL * *

Legend has it that KRAAL – known by the Bedouin as the ‘Temple of the Undead’ – houses a fabulous
Treasure and the four locks of Eternity. It is believed that the anyone who finds the right key to one of the
Locks will break the curse of KRAAL, release the souls of lost adventurers and escape with treasure of
untold proportions. No-one has yet lived to prove this theory.

Here is an excellent Adventure type program for Nascom. The program requires 24k RAM and it makes

 Brilliant use of graphics swords flash, arrows fly and spells home in on the victim!

 VORTEX

Vortex is a set of 29 machine code routines to be called from BASIC. Two screen images are held in
RAM
and manipulated in a variety of ways. A separate routine then up-dates the screen making
changes appear instantaneous. The routines:-

Set, reset, or flip all points in first screen image
Move first screen image one pixel up, down, left or right
Expand or shrink the central part of the first screen image
Reflect the image left-right or up-down

 Swap the contents of the two screen images

*** NASCOM 1 – Cottis Blandford cassette
 interface for N2 format, reliability & fast load £14.90
-- 8K RAM required un less otherwise stated.
-- Please state if Nascom TAPE Basic required
ALL PROGRAMS SUPPLIED ON CASSETTE IN
CUTS/KANSAS CITY FORMAT.

Please add 55p/order P & P + VAT @ 15%
Large (15½ p) Sae for FULL CATALOGUE

PROGRAM POWER
5, Wensley Road,
Leeds LS7 2LX.

 Page 33

THE KEYS OF KRAA L
(24K/B/G)

SERPENT (MK/G)

WIRRAL PILOT V4.0 (MC)

BASIC FILE HANDLER (MC)

GALAXIAN ATTACK (MC/G)

VORTEX(MC/State 16/32/48k)

“ MICRO-POWER” - Magazine

MATHSPACK (B/32K)

AY-3-8910 SOUND CHIP

