

XTAL BASIC

A BASIC INTERPRETER FOR Z-80 BASED SYSTEMS
INCLUDING NASCOM 1 & NASCOM 2

operating manual

XTAL BASIC

operating manual

A BASIC INTERPRETER FOR Z-80 BASED SYSTEMS
INCLUDING NASCOM 1 & NASCOM 2

Software by
ANDREW CORNISH, BSc

And
CRYSTAL ELECTRONICS

© 1980 Crystal Electronics

No part of this book may be reproduced by any means without written permission
from the publishers

Published by CRYSTAL ELECTRONICS, 40 Magdalene Road, Torquay, Devon

ISBN 0 9506828 1 0

Edited, typeset and printed by NWL EDITORIAL SERVICES Langpool, Somerset

Introduction

XTAL (pronounced Crystal) BASIC is an interpreter written in Z.80 machine code
which, while originally developed for the NASCOM microcomputer, may be easily
modified to run on most Z.80 based systems. It enables even the newcomer to
computing to run BASIC (Beginner's All-purpose Symbolic Instruction Code)
programs with all its facilities for complex mathematical operations and String (word)
handling. A comprehensive editing system and single step facility make the
debugging of programs a simple matter.

Nominally an 8K interpreter, XTAL BASIC 2.2 actually occupies 7424 bytes which
means that it can be used on a NASCOM with as little as 8K of extra read/write
memory; however, to obtain reasonable use it is recommended that it be used with a
16K or greater system to give 9K or more of program space.

For those users with some experience of machine-code programming, the ability to
create user-defined reserved words must be one of the most outstanding features of
this BASIC. By writing appropriate sub-routines and by inserting your own defined
words in the auxiliary reserved word table you will be able to expand this interpreter
to give the type of BASIC most suited to your own needs - in fact you may never
need to buy another BASIC interpreter for the rest of your programming days! We
believe that, for the time being at least, this feature is unique to XTAL BASIC 2.2 and
makes it one of the most potentially powerful BASICS ever available.

In order to simplify the use and understanding of this manual all references to
hardware have been restricted to the NASCOM microcomputer but XTAL BASIC is
pretty well hardware independent (apart from the PRINT @ and EDIT commands
which make direct access to the VDU). Sufficient information is given to allow the
more experienced user of other systems based on the Z.80 CPU to make their own
modifications.

XTAL BASIC 2.2 may be run with all available commercial NASCOM monitors
running on either NASCOM 1 or NASCOM 2.

A reasonable knowledge of BASIC is assumed, this is not a BASIC teaching manual,
but those readers unfamiliar with the more general aspects of the language are
advised to refer to the bibliography on page 31 or to any of the computing hobby
magazines for introductory material.

Loading XTAL BASIC 2.2

XTAL BASIC 2.2 is supplied on cassette tape in two formats allowing it to be run in
conjunction with any of the commercially available monitors (B-Bug, T2, T4 and Nas-
Sys) whether used on a NASCOM 1 or a NASCOM 2. Side 1 contains a fast loader
program for use with T2 systems, followed by the interpreter in NASCOM 'R’ format
at 250 baud. Side 2 holds the interpreter in the popular CUTS (Compute Users Tape
Standard - also known as the KANSAS CITY) format at 300 baud and is directly
compatible with a standard Nascom 2 as well as with many other systems.

1

T2 users (side 1)
First enter the fast loader program found at the start of side 1, using the ‘L’
command. This will load from 0E0016 to 0EEF16 When you are satisfied that this
program has been correctly loaded you should enter the command

E 0E00
(nl) before allowing the tape to continue. XTAL BASIC 2.2 will then load at about four
times the ‘L’ speed The fast loader may be ‘scrubbed’ after use since it is not
required during running of XTAL BASIC 2.2.

T4 and B-Bug users (side 1)
Skip past the loader program on side 1 and load the remainder of the tape under ‘R’
command.

Nas-Sys + Nascom 2 users (side 2)
Load side 2 of the tape under ' R' command.

Nas-Sys + Nascom 1 users (side 1)
If you have added CUTS (Kansas City) to your system then load as for Nas-Sys +
Nascom 2. If you have Nas-Sys in a Nascom 1 skip the fast tape loader on side 1,
load under ’R’ (as for T4) and carry out the modifications shown in the section
Modifying XTAL BASIC 2.2.

Non Nascom users
Load side 2 in CUTS format then study the sections Modifying XTAL BASIC 2.2 and
Running XTAL BASIC 2.2. Assuming you have a reasonable grasp of your system
you should not find it too difficult to make the required modifications.

Notes
XTAL BASIC 2.2 occupies memory from 100016 to 2D0016 so that your back-up copy
can be made using the following command:

W 1000 2D00 (nl)

or, for T2 users:

E E80 1000 2D00 (nl)

XTAL BASIC 2.2 takes about 6 minutes to load, at 250 baud.

As with all such material you are strongly advised to make a back-up copy on your
own machine as soon as possible. The source tape may then be safely stored away,
preferably in a metal box or cabinet well away from electromagnetic interference
such as mains power lines and domestic electrical equipment.

Modifying XTAL BASIC 2.2

The following table (Table 1) indicates all the differences between the side 1 and side
2 versions of XTAL BASIC 2.2. Side 1 is in Nascom 1 format and works directly with
B-Bug, T2 and T4 while side 2 works with a Nascom 2 under Nas-Sys. Most of the
differences lie in the codes used for the control characters for New Line, Clear

2

Screen and Backspace [(nl), (cs), (bs)] which use the normal ASCII codes (0D16
,0C16 and 0816 respectively) under Nas-Sys but not under the earlier monitors.

The other major area of modification is concerned with input and output. This is now
served by a single table of jump vectors located between 2BDD16 and 2BFF16. Users
of non-Nascom systems will have to alter these lo suit their own requirements but
sufficient information is available to make this a fairly simple operation.

The only other change is the cursor address which is at 0C2916 in the Nas-Sys
monitor and at 0C1816 in the earlier monitors.

For non-Nascom users: The keyboard scan routine at 2BF716 returns with the carry
flag set if a key has been pressed and with the appropriate code in register A;
otherwise the carry flag is cleared. In your character output routine (2BF416), you
should ensure that the carry flag is cleared on return.

TABLE 1 Address differences for Nasbug and Nas-Sys Monitors

Address Nas-Sys Nasbug

103A 0C 1E
1049 8D 9F
1358 0D 1F
135B 8D 9F
151E 08 1D
152B 0D 1F
1561 0D 1F
16FE 0C 1E
1998 29 18
19A8 29 18
1A0A 0D 1F
1A52 8D 9F
1B0A 8D 9F
2ACE 29 18
2AE2 0C 1E
2C27 29 18
2C2C 0D 1F
2C2D 0D 1F
2C2E 8D 9F
2C35 29 18
2C3B 29 18
2C44 29 18
2C87 0D 1F
2CAB 08 1D
2CB3 11 3C
2CCC 12 3E
2CE5 13 3F

3

The following vectors will also have to be taken into account if modifications are
being made:

Address: Nas-Sys Nasbug Remarks

2BDD E5 CD 38 07 E1 C9 11 3B 01 ED 53 48 0C C9 Set VDU output
2BE5 C3 B2 03 31 33 0C C3 59 03 Exit to monitor
2BEB FF C9 FF C9 Delay routine
2BEE C3 5B 00 C3 5E 00 (T2 & B-Bug: 005D16) Output A to UART
2BF1 C3 00 03 C3 32 02 Print HL in hex
28F4 F7 C9 C3 4A 0C Output character in A
2BF7 C3 54 07 C3 4D 0C Keyboard scan
2BFA C3 08 00 C3 3E 00 Input character to A
2BFD C3 51 00 C3 51 00 Switch tape motor

Note: T2 and B-Bug users must change location 2BEF to 5D16. otherwise CSAVE
will not work!

Running XTAL BASIC 2.2

Entering and leaving BASIC

BASIC may be entered via any one of three entry points:

E 1000 (nl)

E 1002 (nl)

E 1004 (nl)

In the first and third cases the screen will clear and the following display will appear:

XTAL BASIC 2.2

SIZE: XXXXX

O.K.

]

After E 1002 only the last three lines will appear.

XXXXX is the amount of free space (in bytes) available for program and variables.
The] prompt is used to distinguish between BASIC and the monitor operating
system.

Entry at 100416 should be used after first loading XTAL BASIC 2.2. This clears any
BASIC program and variables, and also initialises the auxiliary reserved word tables
(0E8016 - 0FFF16) - more about this in the section on user-defined reserved words.

Entry at 100016 clears any BASIC program and variables, but does not affect the
auxiliary reserved word tables.

Entry at 100216 does not destroy the existing program or variables and would,
typically, be used after making an excursion from BASIC to the monitor operating
system.

4

lt is possible to leave BASIC and return to monitor control at any lime by entering
the command NAS either directly or as part of a BASIC statement. The > prompt tells
you that you are back in the realms of machine code (or the legend NAS SYS n if
using Nas-Sys).

Program entry

As with most BASICs, commands may be entered in direct or deferred mode. In
direct mode commands are entered without line numbers and are executed
immediately upon typing (nl), giving calculator-like facilities.

Example:

PRINT 12 * 12 (nl)
144

System commands such as RUN, LIST, NEW are only of use in this mode.

In deferred mode commands are entered with line numbers to form programs. Line
numbers may range between 1 and 65529 and may be followed by one or more
commands. Each line so entered is automatically placed in its correct position with
line 1 being the first line interpreted. Line numbers may start at any point in the range
but the first line to be interpreted will always be the lowest line number entered.

A line may be deleted by entering its number followed by (nl). A line may be replaced
by entering a new line bearing the number of the unwanted line.

Several commands may be entered on a single line by separating them with colons:

Example:

10 PRINT 2 * 2 : PRINT 4 * 4 (nl)
RUN (nl)
4
16

Separation in this manner allows several commands to be entered in the direct mode
as well as in a program.

A line may be up lo 96 characters in length during entry, and up to 144 characters
under EDIT mode so that any command abbreviations used may be expanded to
their full format.

By popular demand the ? character may now be substituted for the word PRINT
during entry as may many of the graphics key entries under Nas-Sys.

System control commands
NEW causes all program lines and variables to be deleted.

LIST outputs a complete listing of the program from start to finish.

LIST X lists from the specified line number X.

LIST, N lists the first N lines, pauses until any key except (cs) is pressed and then lists

5

the following N lines.

LIST X, N lists N lines from line X, pauses until any key except (cs) is pressed and
then lists the following N lines.

Pressing (cs) during any listing will cause the listing to be abandoned, while
(bs) interrupts and holds both listings and program execution.
RUN begins execution of the program starting at the lowest line number.

RUN X causes the program to execute from line X.

GOTO X causes the program to execute from line X but preserves all variables.

NAS returns control to the monitor under software control (i.e. without a RESET).

CLEAR clears all variables, arrays and strings.

CLEAR N also sets the string space size to N bytes.

CLEAR N, M also sets the location of the top end of RAM lo location M (decimal)
allowing the user to preserve space for machine code routines. No check is made as
to the validity of this entry although if the location selected is below the top of the
variable space the message MEM FULL ERROR will appear.

CLEAR% clears the user defined reserved word table (see chapter on User defined
reserved words) and the associated address tables (0E8016 to 0F7F16 and 0F8016 to
0FFF16). The word list table is cleared so that every location contains 8016 and the
address table so that each pair of address bytes points to location 130B16 which is
the address of the routine to print CMD ERROR. Note there is already a ‘safe’ free
RAM area from 0E0016 to 0E7F16.

EDIT causes the first line of your program to be displayed together with a non-
destructive blinking cursor.

EDIT X begins editing from line X. If the line does not exist then editing begins from
the next highest line number. When a line has been edited to your satisfaction, enter
(nl), the corrected version will be entered into your program and the next line will be
displayed. The position of the cursor at (nl) is not critical, (cs) will cause the edit
mode to be abandoned without entering the last line currently on display.

Editing commands

(space) moves the cursor to the right by one position. (bs) moves the cursor to the
left by one position.

(>) moves the whole line at and to the right of the cursor one position to the right.
leaving a space at the cursor position so allowing the insertion of text or spaces.

(<) deletes the character at the cursor position and moves the rest of the line one
position to the left to close the gap.

(?) modifies the character at the cursor position by adding 1016 to the ASCII value of
that character without advancing the cursor.

Any other key typed enters the character typed in place of the character previously at
the cursor position.

6

Nas-Sys users may use the arrow keys of the Nascom 2 keyboard in place of the (>),
(<) and (?) keys of the Nascom 1 as follows:

(� ����� (@ Q) replaces (<)
(����	�
 (@ R) replaces (>)
(������ (@ S) replaces (?)

CSAVE and CLOAD commands are built into the interpreter so that no distinction
need be made between the various monitors.

CSAVE (NAME) saves the current BASIC program to cassette with a name of up to
six characters. The name is not strictly necessary but is very useful as will become
apparent in the section on CLOAD. The tape should be set to record and in motion
before the command is entered.

CLOAD will load the first BASIC program found on tape regardless of its name.

CLOAD (NAME) will search for and load a named BASIC program from cassette.
The name should consist of numbers and/or upper case letters only.

Examples:
]CSAVE PROG12
]CLOAD STARS

Programs will not necessarily load at the address in memory from which they were
saved but at the address specified in location 0C8C16 (TEXT). This is normally
2D0016 on the tape as supplied but it can be changed by modifying at 0C8C16
(temporarily) or at 128316 (permanently - if the interpreter is ‘saved’ to a new tape).
The advantages are that all XTAL BASIC 2.1 programs may be loaded under XTAL
BASIC 2.2, programs may be appended to one another and extensions may be
added to the interpreter while keeping the entire ‘saved’ package in one continuous
block.

Note: CLOAD sets up an end-of-text pointer after the program has been loaded so
that typing CLOAD by mistake no longer causes you to lose a program.

CLOAD@ and CSAVE@ will load and save a named array allowing files to be stored
without the need for including the complete program. Note that an array can only be
CLOAD@’ed to an array that has already been dimensioned in your program. These
commands may be used in the direct mode subject to dimensioning having
previously taken place.

CLOADing errors: If an error occurs during a CLOAD or CLOAD® then loading will
terminate with the message TAPE ERROR being displayed and execution will return
to BASIC. This has the advantage that, for example, CLOAD® errors can now be
handled from within a program although, if an error occurs under CLOAD, it will not
be possible to load the whole program into memory. However, with the verification
routine now available there should rarely, if ever, be such a problem.

However, if you are having a lot of trouble with CLOADing try the following:

(i) Load the program using ‘R’ or ‘E’ 0E0016, (with the fast tape loader in place) - this
ignores the title.
(ii) Copy it through memory lo its correct location if necessary and make a note of
the top memory location it uses.

(iii) Load the XTAL BASIC 2.2 interpreter if necessary and enter.

7

(iv) Enter this last memory location at 0CB716 (TXTUNF).
(v) Make the first location of the program non-zero, type E 1002 and then type CALL
5072. This adjusts all the end-of-line pointers in the program.
(vi) If the error was not serious it should be possible to correct using LIST and EDIT,
(vii) CSAVE the program again then try to RUN it (Best of British luck!).

With reasonable care there should be few such errors, but this routine can also be
useful when loading programs recorded on other systems.

CLOAD? is a very useful command which may be entered in the same format as
CLOAD or as CLOAD@. It is a tape verification routine which appears to read in
from tape but will never actually interfere with the program area of the interpreter,
The input will be displayed on the VDU as if it were loading and it enables you to
check that you have safely and correctly saved material before you move on. The
following example shows the use of CLOAD?@ within a program (see line 100). Note
the use of ON ERR GOTO (more on this later).

Example:
10 PRINT CHR$(30);TAB(10) “SQUARE ROOTS TABLE”
20 REM use CHR$(12) to clear screen with Nas-Sys
30 DIM A(99)
40 FOR I=0 to 99: A(I)=SQR(I): PRINT A(I): NEXT
50 INPUT “START TAPE AND HIT NL”; X$
60 CSAVE@A
70 REM Data now saved
80 PRINT “Now rewind and press PLAY to verify”
90 ON ERR GOTO 120
100 CLOAD?@A
110 “ALL SAFE – A PERFECT CLOAD!!”: END
120 REM Error Routine
130 IF ERR <> 21 THE PRINT CMD$(ERR); “ERROR”: STOP
140 PRINT “DATA ERROR ON TAPE, REWIND, RESET RECORDING LEVELS”
150 GOTO 50
160 REM Keep on trying!

Interrupting, stopping and single-stepping

The keyboard is scanned at the end of every executed statement during a program
run and at the end of each line during a LIST. This means that either of these
operations may be interrupted at any time as follows:

(bs) will stop the program or listing temporarily, pressing any other key will cause the
program or listing to resume.

(cs) will cause the interpreter to abandon execution or listing and return to the BASIC
input mode. The message ‘BREAK’ in the case of a listing or ‘BREAK IN LINE X’ in
the case of a program run will be displayed. Execution can be resumed by entering
CONT.

A single step facility is available allowing programs to be executed one line at a time.
This extremely useful debugging aid is used as follows:
Start the program with a dummy line (5) using INCH which awaits a keyboard entry.
To run without single stepping enter any letter.
To single step enter (bs) and continue to key in (bs) as each line is executed.

8

Example.
10 X=INCH
20 A=0
30 PRINT A
40 A=A+1
50 GOTO 30

Numbers, strings and variables
There are two types of quantity allowed in XTAL BASIC 2.2: numbers and strings.

Numbers: These can be whole numbers (integers) or floating point numbers (reals).
A number is stored initially as four bytes, one of which represents a signed exponent
while the other three represent a signed mantissa. This gives an exponent range
from -38 to +38 with a seven digit signed mantissa. Although the full seven digits of
the mantissa are available for internal calculation they are usually rounded off to a six
digit figure for output. Leading and trailing zeroes are suppressed on output so that
integers are actually printed as such without long rows of zeroes.

Examples:

3 3.14159 314.159 .314159 3.14159 E+08 -3.14159 E-37

These are all possible forms in which numbers may be output. The last two, for those
not familiar with them, are in scientific notation, a form only used when the output is
too large or too small to be conveniently printed in any other way. Numbers may be
input in this form if required. When accuracy is at a premium you should always enter
numbers to seven significant figures since the interpreter can make use of the
seventh figure even though it will only display six of them.

Strings: These are combinations of ASCII characters representing letters, numbers
and symbols, useful for storing names, titles and text although their intrinsic data can
be extracted by the interpreter and they are frequently used to hold numeric values
as well.

A string can be any combination of up to 255 characters, usually shown in quotes ("
") in order to prevent confusion with numbers or variables.

Examples:

"TREVOR" "Trevor" "12345.6" "Oh! * � %"

are all valid strings.

Variables: These can be named using any combination of letters and/or numbers but
they must start with a letter and (in common with most BASICs) XTAL BASIC 2.2
distinguishes only the first two characters. Variables may be either numeric variables
or string variables holding numbers or strings respectively. String variables must be
suffixed with $. There is no practical limit to the length of a variable name.

Examples:
A AA A2 A9 X$ X4$ ABCD$ AB123$ A1 A100

are all valid variables although BASIC would be unable to distinguish between the
names of the last two pairs since their first two characters are the same.

9

Arrays
In addition to simple numeric and string variables we can use numeric and string
arrays. An array is, in effect, a table full of variables each of which can be uniquely
identified. Naming of arrays takes exactly the same form as for simple variables
except that they are nearly always followed by a set of one or more subscripts, each
subscript representing a dimension of that variable.

Examples:
A(0) TABLE(5,6) NAME$(1,0,2)

are all valid arrays where A is a array of one dimension where the subscript (a sort of
address) is referring to the first element. TABLE is a two dimensional array and
NAMES is a three dimensional array holding strings each of which may be up to 255
characters in length.

In XTAL BASIC 2.2 all array subscripts number from zero.

In order for BASIC to know how much space to allocate to an array, the array in
question must be dimensioned with a DIM statement (q.v.) before being brought into
use. However, if all subscripts in an array have maximum values of 10 or less then
that array may be used without a DIM statement.

Example:

AA(7,4,6)=56 will dimension that array exactly as though the following had been
written: DIM AA(10,10,10):AA(7,4,6)=56

The array will have 11*11*11 =1331 elements requiring over 5300 bytes to store it!

Expressions
Expressions consist of variables, numbers, string variables or strings in any
combination and related by means of arithmetic and/or logic operations.

The arithmetic operations allowed in XTAL BASIC 2.2 are as follows:
+(add) -(subtract) *(multiply) /(divide) ** (raise to power) ** is used in the latter
case in preference to � since this character may not be available to some users.

Relational operators allowed are as follows:

>(greater than) >=(greater than or equal to) = (equal to)
<(less than) <=(less than or equal to) <>(not equal to)

Logical operators allowed are: AND OR NOT

Example:
10 IF(X+Y-Z)>3 AND Y<=20 THEN 100

Relational expressions are normally used within IF statements but can also be used
within arithmetic expressions since a relational expression returns a value of -1 if true
and of 0 if false.

BASIC also allows string expressions but these are restricted to concatenation (+)
and comparison.

10

Example:

A$=="ABC" : BS="DEF" : CS=A$+B$: PRINT C$
gives the output ABCDEF

and a line such as:
10 IF A$="HELLO" THEN PRINT "GOODBYE"
is also valid.

As is usual in both BASIC and mathematics generally, functions can appear within
expressions in place of variables, assuming that they are of the correct type. You
cannot, for example, use a function returning a string expression as part of an
arithmetic expression. A full list of available functions appears in the chapter on
Functions (page 16).

Operator precedence follows the usual mathematical order:

Highest precedence: ()
 **
 * /
 + -
 < <= = > >= <>
 NOT
Lowest precedence: AND OR

Commands and statements
There now follows a full list of commands and statements available in XTAL BASIC
2.2 in its unmodified (by the user) version.

CALL E calls a machine code subroutine starting at the decimal address given by the
expression E. This expression must be an integer in the range -32767 to +32767.

Example:
CALL 3840 will cause the program to jump to a routine at address 0F0016 (=384010)
while CALL -3840 will jump to a routine at F10016.

The user need not worry about storing registers, as long as the subroutine is
terminated with C916 the return to BASIC will be automatic.

CONT causes an interrupted program (page 8) to resume without clearing the
variables. It may be used after an integral STOP command in the program has
caused a stop. During the stopped period the user may look at or alter variables
without causing any harm, but any attempt to modify the program itself will cause the
error message CONT ERROR to appear on resumption. CONT may also be used
after an interrupt using (cs). This is a particularly useful aid to debugging in, for
example, the tracing of an infinite loop.

LET takes the form:

LET V = E where V is a variable and E is an expression; the value of the expression
is assigned to the variable. The word LET is optional but advisable.

Example:
LET AA= 1+2*3/4
assigns the value 4.5 to variable AA.
NAME$ ="JOHN"

11

assigns the string JOHN to variable NAME$ and shows use of the formal without the
word LET.

END terminates execution of the program. It is not strictly necessary when the end of
the program coincides with the end of the highest line number.

STOP like END terminates a program and displays the message BREAK IN N where
N is the line number in which termination occurs. Several STOP commands may be
used in a program and execution can be restarted from this breakpoint by use of
CONT provided that no program alterations have been made during the break.

REM causes the remainder of the line to be ignored by the interpreter. Its main use is
for entering programming notes during the construction of a program.

Example:
10 REM THIS LINE WILL BE IGNORED

PRINT takes the general form PRINT El, E2 EN where El, E2 through to EN are
numeric or string expressions.

The separators between expressions can be as follows:

, (comma) moves the (imaginary) print-head lo the start of the next 16 column zone
of which there are three per line (48 characters).

; (semi-colon) moves the (imaginary) print-head to the right by one character position.

If no separator is used at the end of a PRINT command the print-head moves to the
start of the next line as though it had received a ‘carriage return-line feed’ instruction.

Examples:

10 PRINT "HELLO"; "GOODBYE","TO YOU": 987,
20 PRINT 1234
RUN
HELLOGOODBYE TO YOU 987 1234

Note that all numbers are printed with a leading space which is reserved for a sign
but which only holds one if the number is negative.

PRINT may be abbreviated to ? although it will still LIST and EDIT as PRINT. It will
stay as ? in REM, CLOAD, CSAVE and DATA statements as well as between double
quotes.

PRINT @ allows printing of expressions at specified points on the screen using
coordinates. For this command the screen is divided (internally and automatically)
into 48 (0-47) columns and 16 (0-15) rows. The X co-ordinate must be an integer
from 0 to 47 but the Y co-ordinate may be an integer between 0 and 255 with the
remainder after division by 16 being automatically selected as the Y row. Co-
ordinates and the expression to be printed should all be separated by commas as
shown in the example.

A PRINT @ command should be followed by , or ; to avoid issuing a ‘carriage return-
line feed’ which will scroll the screen up (under Nasbug).

Example:
10 PRINT@ 0,0,"x"; @ 47,0,"x": @ 0,15,"x": @ 47,15,"x";
will print an ‘x’ in each corner of the screen.

12

PRINT @ can be abbreviated to ?@ or even to @ alone, as shown, provided a
PRINT or ? appears in the first instance.

INPUT causes a request for keyboard input to be displayed and takes the form
INPUT "Prompt"; V1 VN. The prompt is optional but must be a string in quotes
followed by a ; if used. If no prompt is used then BASIC prompts with a ?

Data entered as a result of an INPUT command may be in the form of numbers,
strings or strings in quotes. In the case of more than one variable being filled the
entries must be separated by commas.

If the number of entries typed in exceeds the required number for the INPUT
statement then only the first values entered will be used followed by the displayed
message EXTRA IGNORED. If insufficient data is entered a further prompt ?? will
appear.

If the user attempts to enter a string when numerical data is required the message
?RE-ENTER ALL appears and the input list must be re-entered from the start.

Example:
10 INPUT "Name, Rank and Number"; NAMES, RANKS, N
20 PRINT NAMES, RANKS; N
RUN
Name, Rank and Number? Cornish, Lt, 506659
Cornish Lt 506659

INPUT cannot be used in the direct mode.

READ DATA RESTORE are used for storing and using data from within a
program as opposed to data entered by the user,

READ V1 VN reads in data from a list stored in the program in DATA statements.
XTAL BASIC 2.2 maintains a pointer which remembers the last item of data read so
that subsequent READ instructions will continue from that point. The format is very
like that of the INPUT statement (without a prompt) and if there is insufficient data
available the message DATA ERROR IN L (L = line number) appears.

DATA D1 DN specifies the items of data to be read. These items may be
numbers, strings in quotes, or strings without quotes provided they contain no spaces
or commas. The user may have as many DATA statements as he likes within a
program, each containing as many or as few items as are convenient. DATA
statements may appear at any position in a program and will be read as though they
were all in one block.

RESTORE sets the DATA pointer back to the first item of data in the program.

RESTORE L sets the DATA pointer to the first item of data following line number L.

GOTO L transfers program execution to line L If line L does not exist the program
stops with the message BRANCH ERROR IN L.

GOSUB L transfers program execution to line L, execution continues from this point
until a RETURN instruction is encountered whereupon execution is returned to the
line immediately following the original GOSUB command.

RETURN terminates a subroutine accessed by a GOSUB. If RETURN is
encountered without having been preceded by a GOSUB then the message
RETURN ERROR IN L is displayed and execution stops.

13

POP has the same effect as a RETURN but without the branch. It pops one address
off the stack of return addresses so that the next RETURN will branch one statement
beyond the second most recently executed GOSUB.

If has several forms:
IF E THEN L these two are equivalent
IF E GOTO L
IF E THEN S1: S2: SN

E is normally a logical expression. In the first two cases execution is transferred to
line L if E is true; if E is false then execution transfers to the next line. In the third
case execution stays on the same line (statements S2 to SN) only if E is true,
otherwise it transfers lo the next line.

Example:
10 IF X=Y THEN PRINT "HELLO": GOTO 30
20 PRINT "GOODBYE"
30 END

ON E GOTO LI, L2, LN
ON E GOSUB LI, L2, LN

In both cases expression E is evaluated and must return a number between 0 and
255. Execution then transfers to line L1 if E=1, L2 if E=2 and so on. If E = 0 or E = a
number greater than the number of lines in use execution remains on the same line.
The transfer takes the form of a GOTO or a GOSUB as specified.

FOR V=E1 TO E2 NEXT
FOR V=E1 TO E2 STEP E3 NEXT

In both cases V is a numeric variable which is initialised to the value of expression E1
while E2 represents a numeric limit,

E3 represents a numeric increment and if it is not present it is assumed to be of value
1. El, E2 and E3 may be positive or negative.

Execution of this command sets V to E1 until a NEXT is encountered

NEXT may be in either of three forms:
NEXT
NEXT V
NEXT V1, V2 VN

This command adds the value of E3 to V (adds 1 if STEP was omitted) and
compares V with E2. If V>E2 (or if V<E2 in the case of a negative STEP) execution
is transferred back to the statement immediately following the FOR statement,
otherwise execution continues from the point following the NEXT statement.

In the first form (NEXT) the most recently executed FOR statement is dealt with so
that no variable need be specified. In the second form (NEXT V) if V does not
correspond to the V in the last FOR statement that FOR loop will be abandoned and
the next most recently executed one checked, and so on until the correct FOR
statement is found. If V does not correspond with any of the current FOR loops, or if
there is no active FOR loop, the program stops and displays the message NEXT
ERROR IN L

The third form (NEXT V1, V2 VN) is a useful and short way of dealing with nested
loops which would otherwise have to take the form NEXT V1: NEXT V2: : NEXT
VN

14

Example:
5 DIM A(7.7)
10 FOR X = 0 TO 7
20 FOR Y = 0 TO 7
30 A(X,Y)=0
40 NEXT Y, X
When RUN, this routine will set all elements of an 8 by 8 array (A) to zero (line 30).

DIM is used to reserve Storage for numeric or string arrays. It takes the form DIM
ARRAYNAME (V1, V2, VN) where each array is shown as ARRAYNAME (E1, E2
.... EN). The ARRAYNAME may be any legal variable name while E1 to EN are
positive integers representing the maximum size of each dimension in the array. If an
array is referenced without having first been dimensioned it is assumed to have a
maximum subscript of 10 for each dimension referenced

The DIM statement thus defines the amount of storage, the number of dimensions
and the size of each dimension in the array

An array cannot be dimensioned more than once in each program without the
program stopping and displaying the message DIMENSION ERROR IN L.

POKE E1, E2 will place the computed value of E2 in memory location E1 .El must lie
in the range -32767 to + 32767 and E2 must have a value between 0 and 255. E1
and E2 are of course, expressed in decimal. See also PEEK, under Functions.

SPEED E sets a delay in the character output to the VDU. E must lie between 0 and
255 and 0 gives the slowest (very slow) speed while 255 is normal (fastest) speed.

OUT E1, E2 sends the value of E2 to output port E1. This is designed for Z80
systems using I/O port addressing as opposed to memory mapped port addressing.
Both E1 and E2 must have values between 0 and 255. See also INP under
Functions.

WAIT has two forms:
WAIT E1, E2
WAIT E1, E2, E3

where all Es must be integers in the range 0 to 255. This instruction monitors the port
specified by E1, EXCLUSIVE ORs it with E3 (if used) and ANDs the result with E2
treating E2 and E3 as binary numbers.

Example:
WAIT 2, 64 suspends execution until bit 6 of port 2 is set.
WAIT 1, 255, 15 waits until any of the 4 most significant bits are set or until any of the
least significant bits are reset on port 1.

ON ERR GOTO L
ON ERR GOSUB L

These two commands are used for handling error routines from within your BASIC
program rather than forcing abandonment of execution.

They simply set an internal flag so that if an error occurs after the command a GOTO
or a GOSUB will be made to line L where a routine will perform what ever action has
been programmed (by you) to overcome that error. This allows us to forget about, for
example, testing for division by zero within a program; the error is simply allowed to
take place and is then handled by a subroutine.

15

lf an ON ERR GOSUB statement is used then the last statement in the error handling
routine should be a RETURN as with other GOSUBs (or use POP and go where you
will). Execution returns to the statement following that where the error occurred.

Notes.

(i) Any error must occur after the ON ERR statement
(ii) The ON ERR flag reverts to normal after the first error (in case you have an error
in the error routine!) so this should be set again by another ON ERR statement either
at the end of the error routine or soon after re-entering the main program.
(iii) To restore the ON ERR flag to normal after a program using it has terminated
just POKE 3204,0. This can, of course, also be done from within a program.

Example;

10 REM Program to print list of all error messages and reserved words
20 SPEED 210: REM so that you can take it all in!
30 FOR I =1 TO 255
40 ON ERR GOSUB 100
50 PRINT CMD$(I)
60 NEXT
70 SPEED 255: POKE 3204,0: END
80 REM Now for the error handling routine
100 REM Test for end of error message list
110 IF l<64 THEN l=63: RETURN
120 REM Test for end of user defined reserved word list
130 IF I<128 THEN l=127: RETURN
140 REM Must beat end of function list
150 POP: GOTO 80

Functions

ABS(X) returns the absolute value of expression X.

Example:
ABS(-314159) returns 314159

ASC(A$) returns the ASCII value of the first character in the string.

Example:
ASC(“ABC") returns the value 65 (remember BASIC is decimal).

ATN(X) returns the arctangent of X in radians ranging from –pi/2 to + pi/2

Example:
ATN(1) returns 0.785398 which is pi/4.

CHR$(X) returns a single character string whose ASCII value is X. X must be an
integer (if it isn’t then BASIC will round down) between 0 and 255.

Example:
PRINT CHR$(30) returns a clear screen character and then clears the screen.
PRINT CHR$(69) returns an E (decimal - remember?).

CMD$(X) returns d string of the reserved word or error message corresponding to

16

the argument X (which must be between 1 and 255).

if X is less than 64 but greater than 0 then the error string corresponding to X (see
index of error messages on appendix page vi) is returned.

Example:
PRINT CMD$(2) returns the string SYNTAX.

If X is 128 or more a reserved word is output.

Example:
X$=CMD$(142) puts RETURN into X$.

If X lies between 64 and 127 then a user defined reserved word is returned,
according to its position in the auxiliary table.

If the argument refers to a non-existent message or word the error message CMD
ERROR will be displayed.

COS(X) returns the cosine of X where X is in radians.

DEF FN is used to define a user function. It takes the form DEF FN NAME(V) = E
and must be kept to one line. NAME can be any legal name and V can be any legal
variable name. V is a dummy variable and can be used within the expression E. The
DEF statement is ignored (as if it were a REM) until a function call is encountered in
the program. A function call takes the form FN NAME (E).

NAME identifies the appropriate DEF FN statement and then E is assigned to
variable V whenever it occurs within the DEF FN statement with the result being
returned to the calling expression.

If a function call occurs before the appropriate DEF FN then the program stops and
displays the message FN DEFN ERROR IN L. DEF FN is not allowed in direct mode.

Example:
10 DEF FN ASN(X) = ATN(X/SQR(1-X*X))
20 DEF FN ACS(X) = 1.570796-FN ASN(X)
30 FOR l=0 TO 1 STEP .1
40 PRINT I, FN ASN(I), FN ACS(I)
50 NEXT I
This program will print out a table of values ARCSIN(I) and ARCCOS(l) for values of I
between 0 and 1 in increments of 0.I. Have a go...

ERR returns the number of the last error that occurred. This function is particularly
useful within ON ERR routines (see chapter on Commands and statements) to find
out what error actually occurred.

Example:
If the last error was a syntax error (it often is!) then PRINT ERR will output the value
2.

EXP(X) raises e (value 2.71828) to the power of X. If X is greater than about 87 the
error message OVFL ERROR is output.

INCH waits for a keyboard entry and returns the ASCII value of that entry. Very
useful for single character interactive responses such as Y/N?

Example:
10 PRINT "Type in a character"
20 A$=CHR$(INCH)

17

30 PRINT "You typed a: "; A$: END

Note; see also KBD.

INP(X) returns the current value of input port X as a number from 0 to 255. X must be
an integer between 0 and 255.

INT(X) returns the largest integer below or equal to X.

Example:
PRINT INT(3.14159) returns the value 3.

KBD scans the keyboard to see if a key has been pressed. It returns zero if no key
has been pressed or the ASCII value if one has. It does not wait for a keypress.

LEFT$(A$,X) returns the leftmost X characters of string A$.

Example:
LEFT$("ABCD",2) will return the string AB.

LEN(A$) returns the length of the string A$ including punctuation marks, control
characters and spaces.

Example:
LEN("ABCD") returns the value 4.

LOG(X) returns the natural logarithm of X where X must be greater than 0.

MID$(A$,X) returns the rightmost characters of A$ remaining after the Xth character.

Example:
MID$("ABCD",2) returns the string BCD.

MID$(A$,X.Y) as above, but returns only Y characters from the Xth.

Example:
MID$("ABCD",2,1) returns the string B.

PEEK(X) returns an integer from 0 to 255 representing the contents of the memory
location X (specified in decimal). X must be an integer from -32767 to+32767 (as for
CALL).

POS(X) returns the value of the present column position on the output device. The
value of X is immaterial but should be legal.

PI returns the value 3.14159 and is faster than using a variable to hold the number.

RND(X) returns a random number from 0 to 1. lf X<>0 a new random number will be
returned; if X=0 the previous number returned is returned. The random number
generator uses the Z80 refresh register several times during the routine to give far
more random results than a ' pseudo' random number generator.

RIGHT$(A$,X) returns the X rightmost characters of string A$.

Example:
RIGHT$("ABCD",2) returns the String CD.

Note: X must be an integer in the range 0 to 255.

SGN(X) returns the sign of X: if X>0 it returns +1, if X<0 it returns -1 and if X=0 it
returns 0.

18

SIN(X) returns the sine of X where X is in radians.

SIZE returns the size of memory available for programs, variables and pointers. On a
16K system it will initially return 8907 bytes. If your system is greater than 32K a
negative number is returned.

SIZE$ returns the size of memory available for strings. When the system is initialised
via E 1000 or E 1004, SIZES returns value 50. (See CLEAR to alter this).

Note: the use of $ on this function is not strictly proper since a number rather than a
string is being returned, but as a mnemonic its use outweighs its correctness (we
think!).

SPC(X) prints X spaces and is only valid within a print statement. X must be an
integer between 0 and 255.

SQR(X) returns the square root of X. X must be greater than 0.

STR$(X) returns a string representation of a numeric variable.

Example:
If the value of the variable X is 1.234, STR$(X) returns the string "1.234".

TAB(X) causes spaces to be printed until the (imaginary) print-head reaches column
X on the output device. Only valid within PRINT statements.

TAN(X) returns the tangent of X where X is in radians.

VAL(A$) returns the numerical value of string A$. If the first character of A$ is not a
.,+,-, or a digit then VAL(A$) returns the value 0.

Example:
VAL("1.234") returns the value 1.234.

User defined reserved words

XTAL BASIC 2.2 has a capability which, it is believed, is at the time of writing unique
to this version of BASIC. It allows the creation of an auxiliary reserved word table of
up to 64 extra reserved words. This means that machine code routines can be written
and added to the interpreter as if they were commands and functions already built
into the language. Some knowledge of machine code programming is needed to take
real advantage of this facility and users who have not yet experienced machine code
are advised to get studying! The ability to create what is, in effect, a personalised
BASIC conforming to your own requirements is an extremely powerful tool indeed.

When a line of BASIC is entered it is not used by the interpreter in the form in which it
was typed, instead, each reserved word is shortened to an appropriate single byte
code.

For example: END (ASCII codes 4516 (E), 4E16 (N) 4416(D)) becomes simply 8016
while PRINT and ? become 9816. Since variable names and numbers normally use
ASCII codes (from 0 to 7F16) we can use codes 8016 to EE16 to represent our own
reserved words - which, incidentally, is why graphics characters can be used in place
of reserved words on the Nascom 2.

This rule is not followed within REM, DATA. CLOAD or CSAVE statements, nor

19

between double quotes where any combination of characters, including graphics, are
allowed.

LIST and EDIT both ‘blow up’ the reserved word codes into the actual words normally
used so that the user is not normally aware that all this is going on. As a result of this
process programs are considerably compacted without any loss of clarity.

In XTAL BASIC 2.2 all user defined words are internally shortened to two bytes, the
first one always being FF16 to distinguish them from the inbuilt reserved words.
These words are stored in the Auxiliary Reserved Word Tables with their addresses,
in turn, stored in the Auxiliary Address Table.

Auxiliary reserved word table at: E8016 - F7F16
Auxiliary address table at: FB016 – FFF16

To create a new reserved word requires only a few simple steps. First of all the user
defined (auxiliary) reserved word table and the auxiliary address table must be
cleared either by entering BASIC from the monitor via E 1004 (see page 4) or by
issuing a CLEAR% command from within BASIC (see page 6). The following
procedure should then be followed:

(i) Find a free area to place the machine code routine. The area 0E0016 to 0E7F16 is
free but only 128 bytes in length. Far more useful is the fact that the area from
2D0016 onward can be used so long as the location TEXT (see appendix page iii) is
set to a point above the new routine(s). This enables you to save the interpreter and
its new additions as a continuous block. (see also P.7 under CLOAD)

(ii) The name of the routine, its reserved word, must now be written into the
auxiliary reserved word table (0E8016 to 0F7F16) as a set of ASCII codes, the first
letter having its top bit set. The easiest way to do this is to look up the ASCII (hex)
code for the first letter, add 816 to the first (hex) digit and enter this. Thus, for
example, the letter E, ASCII 4516 would be entered as C516 since 416 (the first digit)+
816 = C16. The first word in the table starts at 0E8016 and each word is entered
contiguously with the next (i.e. there are no spaces between words) with the table, no
matter how short or long, always ending in 8016.

(iii) The appropriate address in the auxiliary address table is then modified so that,
for example, the first address (relating to the first word) points to the address at which
the first machine code routine starts.

If an entry is now made into BASIC via E 1000 or E 1002 (but not E 1004 which will
clear out the newly created tables!) your reserved word and its routine will behave
exactly as though it had always been a part of XTAL BASIC 2.2.

Example.1
XTAL BASIC 2.2 does not have a reserved word for CLEAR SCREEN. This has
been deliberately omitted to encourage users lo have a go at creating their own
routines and this example shows you how to develop this command.

To clear the screen under Nas-Sys monitor it is only necessary to load register A with
0C16 and then do a RST 30. The full machine code routine is thus:

3E 0C (load A with (cs) character code)
F7 (RST 30)
C9

20

Find a suitable spot - we shall use 0E0016 - for your routine and enter it using the
Nascom ' M' command. (If you are using one of the earlier monitors then use the
following routine: 3E 1E C3 3B 01 in place of the above. Note that (cs) is 1E16 in
earlier monitors.)

Now you must enter the new reserved word in the auxiliary reserved word table. We
shall use the word CLS as the new command. CLS in ASCII is 4316 (C) 4C16 (L) 5316
(S) which becomes C3 4C 53 once we have set the top bit of the first letter as
described above.

The final step is to modify the auxiliary address table at location 0F8016 (since this is
going to be the first entry) so that it points to our routine. Using the ‘M’ command you
can now enter

M 0F80
0F80 xx> 00 0E

Now re-enter BASIC via E 1000 (or E 1002 if you have a program to be saved) and
try filling the screen with a bit of garbage. Type in a (nl) then enter the following line:

CLS (nl)

whereupon your screen should clear and the cursor will appear in its normal starting
position.

Now you know how to do it for a simple command, you can go on to create routines
as simple or as complex as you like and they wilt all behave as though they had
always been a part of XTAL BASIC 2.2.

Commands and functions

There is an important distinction to be borne in mind when creating commands or
functions and each will be checked by BASIC for correct syntax when being used. If
the reserved word is to be used as a function then the word must end with a "("
(ASCII 2816) to indicate that an argument is to follow (see the next worked example
on DEEK and DOKE).

In a command routine the HL register pair should be stacked if it is likely to be
modified during execution of the routine since HL holds the memory address of the
position directly following the command word. HL can then be ‘popped’ back (using
RET or C916 to get back to BASIC).

In a function routine, on the other hand, the pointer to the text position has already
been stacked and should be ‘popped’ and incremented to find the value of the
argument. The routine will have a special end since a right bracket must follow the
argument expression (again see the worked examples on DEEK and DOKE).

Note: If an auxiliary reserved word has been defined and used in a program but has
subsequently been cleared from the table, you will still be able to LIST the program,
whereupon all references to that word will LIST as a decimal number preceded by
two question marks (e.g. ??64).

Example.2
DEEK and DOKE are two byte equivalents of PEEK and POKE first seen in the
NASCOM 8K BASIC interpreter. They are very useful for reading and storing 16 bit
quantities such as addresses.

21

First the machine code routines:
0E 00. CD 61 17 DOKE CALL UEXINT ; Fetches integer expression in
 03. D5 PUSH DE ; range ±32768 in DE
 04. CD 4C 15 CALL TSTCOM ; Look for ‘ .’ Between expressions
 07. CD 61 17 CALL UEXINT ; Fetch 2nd integer expression
 0A. E3 EX HL,(SP) ; Put 1st expression in HL
 0B. 73 LD (HL), E ;
 0C. 23 INC HL ; Store second expression at
 0D. 72 LD (HL), D ; address given by first.
 0E. E1 POP HL ; Restore text pointer
 0F. C9 RET
0E 10. E1 DEEK(POP HL ; Retrieve text pointer
 11. 23 INC HL
 12. CD 61 17 CALL UEXINT ; Read 2 bytes at (DE)
 15. 1A LD A, (DE)
 16. 13 INC DE
 17. 47 LD B, A
 18. 1A LD A, (DE)
 19. E5 PUSH HL ; Stack text pointer, then convert
 1A. C3 A4 2B JP FNENDI ; number in AB to f.p and test
 ; for) to end

Now the reserved words are entered into the tables:
M 0E80
0E80 80>C4 4F 4B 45 C4 45 45 4B 28 DOKEDEEK(

Followed by their addresses:
M 0F80
0F80 0B>00 0E 10 0E Addresses 0E0016 and 0E1016

And DEEK and DOKE are now part of the interpreter. Run up XTAL BASIC 2.2 via E
1000 or E 1002 and try this test:

] DOKE 3024,0
Two square boxes should appear at the top of the screen.

Then try:
] ?DEEK(3024)
And the answer 0 should appear.

Example.3
The function RAD is a degree to radian conversion function which takes a floating
point expression (in degrees) and converts it to radians by multiplying it by pi/180.

First the machine code routine:
0E 1D. E1 RAD(POP HL ; Retrieve text pointer
 1E. 23 INC HL
 1F. CD 77 1B CALL EXNMCK ; Fetch an f.p. expr in 0CBF16 to
 ; 0CC216

 22. 01 0E 7B LD BC, 7B0E ; BCDE contains pi/180
 25. 11 35 FA LD DE, FA35
 28. E5 PUSH HL ; Save text pointer again
 29. CD FB 24 CALL MULTI ; and do multiplication
 2C. C3 AA 2B JP FNEND ; Test for) and end.

22

Then the reserved word table.
M 0E89
0E89 80>D2 41 44 28 RAD(

And the address table:
M 0F84
0F84 0B>1D 0E

Now run up BASIC and try the following:
? SIN(RAD(30))
and the result should give the sine of 30 degrees, 0.5.

Example.4
SETVID is a routine in XTAL BASIC 2.2 which will restore normal VDU output after,
for example, using a printer with a different format. SETVID lives at 1122910 so we
could access it using either:

CALL 11229

or

SETVID 11229 followed at any time by CALL SETVID

but both these methods are wasteful of space compared to making use of the two
bytes required for a reserved word. Since the routine is already in the interpreter we
need only modify the tables as follows:

M 0E8D
0E8D 80>D3 45 54 56 49 44 SETVID

M 0F86
0F86 0B> DD 2B

And SETVID is now a reserved (two byte) word instead of being a seven byte CALL
command.

Error messages

After an error occurs (whether resulting from a direct command or from within a
program) one of the following messages will be output and execution will terminate
(unless, of course, an ON ERR statement is in force).

The forms of error messages are:

XXXXXX ERROR (in direct mode)

XXXXXX ERROR IN L (in deferred mode, where L is a line number)

and XXXXXX will be one of the following:

SYNTAX A typing error has been made or a command has been wrongly formatted.

MEM FULL An attempt has been made to execute a command which would require
more memory than is available.

OVFL A numeric overflow has resulted from a calculation.

DIVISION An attempt has been made to divide a number by 0.

23

BRANCH Reference has been made to a non-existent line number.

NEXT A NEXT has been encountered which cannot be matched to a FOR
statement.

RETURN An attempt has been made to execute a RETURN or POP without a
corresponding GOSUB.

DATA A READ statement has been presented with insufficient data.

OPERAND An operand has been omitted after an operator.
Example: PRINT 2+3+4+

QTY A parameter in an array or function is out of range.

Examples:
A(X) where A is an array and X<0 or not an integer.
LOG(X) where X<=0
SQR(X) where X<0

Note: reference lo the chapters on commands and functions should usually reveal
the cause of this error message.

RANGE An attempt has been made to access an element of an array outside its
previously defined dimensions.

STR OVFL Maximum string length is 255 characters.

STR SPC All RAM space available for strings has been used up. See CLEAR
command to overcome but beware of using this in mid program!

TYPE An attempt has been made to use a number in place of a string (or vice
versa).

DIMENSION An attempt has been made to re-dimension an array. An array can only
be DIMmed once in a program. This includes arrays of under ten elements that have
not been formerly DIMmed.

DIRECT INPUT and DEF statements cannot be used in direct mode.

CONT An attempt has been made to continue a program after an error occurred,
after alterations have been made to the program or if no program existed.

FN DEFN An attempt has been made to refer to a user defined function that has not
yet been defined (see DEF under Functions).

STR COMPLEX A string expression is too long or complex and needs to be broken
into smaller sections.

CMD An attempt has been made to reference a user defined command which does
not exist in the system - a common cause for this is that the user tables have been
inadvertently CLEARed.

Alternatively, in the CMD$ function, a code has been selected for which there is no
error message or reserved word string.

TAPE A checksum error has been detected while loading or verifying a program.

24

Appending BASIC Programs
As outlined previously in the section on CLOAD, it is possible lo append one program
to another in XTAL BASIC 2.2, making use of the facility to load programs wherever
we please. The following assumes that we wish to append a program PROG2 on the
end of another program PROG1:

(i) Ensure that the two programs have no line numbers which would appear in the
wrong place when joined (i.e. the smallest line number in PROG2 must be greater
than the largest in PROG1).

(ii) Type CLOAD PROG1.

(iii) Now do DOKE 3212. DEEK(3255)-2 it you have added DEEK and DOKE to your
system. Otherwise, do:

A=PEEK(3255): B=PEEK(3256)
IF A<2 THEN A=A+256: B=B-1
POKE 3212,A-2: POKE 3213.B

This step simply brings TEXT up to TXTUNE-2. If a LIST is now done, you will find
that PROG1 will seem to have disappeared. It hasn' t - it is simply being ‘held’ out of
the way, so that following CLOADs don’t destroy it.

(iv) Type CLOAD PROG2.

(v) Finally, do DOKE 3212.11520
or POKE 3212.0: POKE 3213,45
This restores TEXT to 2D0016, or, with other values, to wherever your TEXT location
normally points.

NOTE: These POKE addresses are for Nascom and identical systems.

You should now have a program with no visible join which may now be LISTed, RUN
or (preferably first) CSAVEd. If you wish to append a third program, you may return to
step (iii), if several programs are to be appended to the first, ignore step (v) until all of
the programs have been appended, then do step (V) at the end.

Creating Useful Subroutines
Using the cassette appending facility described above, the user can build his/her own
library of subroutines in BASIC for incorporation into programs. A subroutine so
written should have larger line numbers than those in a program likely to incorporate
it, so that it may be CSAVEd as a routine and appended as required to the user’s
program.

 The subroutine below suspends the printing of (nl) characters, so that the user
can, for example, remain on the same line after an INPUT (under the NAS8UG
monitors, an automatic screen scroll will normally occur at that point). All printing and
positioning of the cursor can then be performed by means of the PRINT@ command.
Note especially the use of PRINT@ in lines 40 and 50, to position the cursor without
printing anything.

The routine at 10000 puts a machine-code subroutine in the space from 0E7916 to
0E7F16, the codes being stored in a DATA statement within the program. The first
number in the DATA statement gives the number of bytes -1 to be put into memory.

Appendix

i

5 SETVID=11229: REM Sub-routine within BASIC
6 REM to restore normal VDU vector
10 GOSUB 10000: REM Set up sub-routine
20 POKE OV, OL: POKE OV+1, OH: REM Set up output vector
30 PRINT CHR$(30); @ 15,0,"NON-SCROLL TEST”
40 PRINT@ 1,1, INPUT "Your move"; A$
50 PRINT@ 1,14, INPUT "Your next": B$
60 CALL SETVID: REM Resets VDU output
70 END

10000 REM Generate machine-code subroutine at 0E7916
10010 OP=3705: OV=3147: READ L
10020 OH=INT(OP/256): OL=OP-OH*256
10030 FOR I=OP TO OP+L: READ N: POKE I,N: NEXT
10040 RETURN
10050 DATA 5,254,31,200,195,59,1

The little machine-code routine entered by this subroutine is as follows

0E79 - FE 1F C8 C3 3B 01

Hex Dump of Fast Tape Loader

Addr. 1 2 3 4 5 6 7 8 9 A B C D E F

0E00- CD E9 0E CD 51 00 CD 3E 00 FE FF 20 0D 06 03 CD
0E10- 3E 00 FE FF 20 04 10 F7 18 12 FE 1E 20 E8 06 03
0E20- CD 3E 00 FE 1E 20 E2 10 F7 C3 51 00 CD 3E 00 6F
0E30- CD 3E 00 67 CD 3E 00 5F CD 3E 00 57 0E 00 CD 70
0E40- 0E CD 3E 00 B9 20 12 43 0E 00 CD 3E 00 77 81 4F
0E50- 23 10 F7 CD 3E 00 B9 28 0A EF 45 52 52 4F 52 1F
0E60- 00 18 08 CD 40 02 AF BA CA 51 00 18 99 00 00 00
0E70- D5 CD 32 02 E3 CD 32 02 E3 D1 C9 00 00 00 00 00
0E80- CD E9 0E CD 51 00 AF 47 FF 10 FD 2A 0E 0C ED 5B
0E90- 10 0C EB 37 ED 52 DA 51 00 EB AF CD 5D 00 06 04
0EA0- 3E FF CD 5D 00 10 F9 AF BA 20 02 43 04 58 7D CD
0EB0- 5D 00 7C CD 5D 00 7B CD 5D 00 7A CD 5D 00 0E 00
0EC0- CD 70 0E 79 CD 5D 00 0E 00 7E 81 4F 7E CD 5D 00
0ED0- 23 10 F6 06 0B 79 CD 5D 00 AF 10 FA CD 40 02 18
0EE0- AD 00 00 31 33 0C C3 59 03 D1 21 E3 0E E5 D5 C9

Appendix

ii

XTAL BASIC 2.2 Memory Map

(0C9216) TOPRAM

(0CA616)
STRINGS

STRBOT

(0C8816)

FREE
STRING SPACE HIMEM

(0CBB16)
FREE

VARIABLE SPACE LOMEM

(0CB716)

VARIABLES
AND POINTERS TXTUNF

(0C8C16)
BASIC PROGRAM

TEXT

100016
XTAL BASIC 2.2
INTERPRETER BASIC

0F8016
AUXILIARY

ADDRESS TABLE

0E8016

AUXILIARY
RESERVED WORD TABLE

0E0016
FREE SPACE

STACK

0D6416
0D3416

STACK BUFEND
(EDIT)

0CD516
INPUT BUFFER

BUFFER

0C8016
BASIC SCRATCHPAD

0C0016
MONITOR SCRATCHPAD

Note that the T2 tape loader/dumper loads from 0E0016 to 0EFF16, but will be
corrupted as soon as XTAL BASIC 2.2 is run up, since the auxiliary reserved word
tables occupy that space. This should not normally cause problems, since XTAL
BASIC 2.2 has its own tape routines, and the tape loader can be relocated to, say.
0D0016, by changing the following locations from 0E16 to 0D16 (for Nascom users),
and then copying down to 0D0016:
0E0216, 0E4016, 0E8216, 0EC216 and 0EEC16.

Appendix

iii

VDU Map for PRINT @ command

Hex X coordinate

Address 00 04 08 12 16 20 24 28 32 36 40 44 47

0BCA 0

080A 1

084A 2

088A 3

08CA 4

090A 5

094A 6

098A 7

09CA 8

0A0A 9

0A4A 10

0A8A 11

0ACA 12

0B0A 13

0B4A 14

0B8A 15

Y coordinate

The above diagram should help the user to understand how the PRINT@ command
relates to the VDU Map shown in the Software Notes on the Nascom 1. This
command allows the user to print characters at any specified point on the screen.
The ‘@’ can appear as many limes as desired within a PRINT command, for ‘plotting’
several points at once.

Example:

10 A$=CHR$(127): PRINT@ 0,0,A$;@46,0,A$;@ 0,15,AS; @ 46,15,A$;

This would print a block at each of the four corners of the screen.

There are one or two restrictions on the use of this command:

First: it is not very useful in direct commands (unless used on Row 0,which does not
scroll), since the screen is always scrolled at least twice after a direct command.
Second: if text is printed at the end of the bottom line (i.e. @47,15), this will also
scroll the screen.

The screen will also scroll, of course, when the program ends or breaks.

A ‘ ;’ should follow any expression PRINTed by this command, again so that the
cursor remains in the right place after the printing.

Appendix

iv

Incompatibilities with XTAL BASIC 2.1

Happily, there are very few and, in general, your earlier programs wil1 run very nicely
in version 2.2.

Any programs which used SIZE or SIZE$ must be EDITed at the appropriate places -
you will find the word CMD$ or CMD$$ and these should be changed back to SIZE
or SIZE$ respectively.

Some locations within the interpreter which were used within programs will have
moved - e.g. SETVID. which was at location 548410 in 2.1 is now at 1122910 (this is
the routine to restore normal VDU output - see subroutines appendix page i). In the
BASIC scratch-pad, BUFFER now starts at 0CD516 the location of the SPEED
parameter is at 0C8616. and the scratch-pad itself starts at 0C8016 (to allow for the
expanded monitor scratch-pad under NAS-SYS).

PCW Benchmarks

For those who are interested in such, and to show that we have achieved a
reasonable speed improvement with XTAL BASIC 2.2, here are the timings, taken on
a NASCOM 1 computer running at 2 MHz, of the execution of the eight test programs
shown by Personal Computer World magazine (January 1978 issue):

 BM1 BM2 BM3 BM4 BM5 BM6 BM7 BM8

XTAL BASIC 2.1 2.9 12.5 24.7 26.1 30.4 50.3 72.4 10.2
NASCOM 8K BASIC 2.2 10.8 22.2 23.2 25.2 38.6 55.2 10.4
XTAL BASIC 2.1 1.7 9.9 20.9 22.2 24.8 36.9 52.8 9.4

These timings (all in seconds) are, of course, halved on a machine running at the full
4 MHz of the Z-80A processor.

Error Message and Reserved Word Lists

ERROR
MESSAGES

Next
Syntax
Return
Data
Qty
Ovfl
Mem Full
Branch
Range
Dimension
Division
Direct
Type
Str Spc
Str Ovfl
Str Complex
Cont
Fn Defn
Operand
Cmd
Tape

01
02
03
04
05
06
07
08
09
0A 10
0B
0C
0D
0E
0F 15
10
11
12
13
14 20
15

RESERVED
WORDS

END
FOR
NEXT
DATA
NAS
INPUT
DIM
READ
LET
GOTO
RUN
IF
RESTORE
GOSUB
RETURN
EDIT
REM
STOP
OUT
ON
CALL
WAIT
DEF
POKE
PRINT

80
81
82 130
83
84
85
86
87
88
89
8A
8B
8C 140
8D
8E
8F
90
91
92
93
94
95
96 150
97
98

CONT
LIST
CLEAR
CLOAD
CSAVE
NEW
SPEED
POP
TAB
TO
FN
SPC
THEN
NOT
STEP
+
-
**
*
/
AND
OR
>
=
<
SGN

99
9A
9B
9C
9D
9E
9F
A0 160
A1
A2
A3
A4
A5
A6
A7
A8
A9
AA 170
AB
AC
AD
AE
AF
B0
B1
B2

INT
ABS
CMD$
INP
POS
SQR
RND
LOG
EXP
COS
SIN
TAN
ATN
PEEK
LEN
STR$
VAL
ASC
CHR$
LEFT$
RIGHT$
MID$
SIZE
INCH
KBD
ERR
PI

B3
B4 180
B5
B6
B7
B8
B9
BA
BB
BC
BD
BE 190
BF
C0
C1
C2
C3
C4
C5
C6
C7
C8 200
C9
CA
CB
CC
CD 205

Decimal representations of some of the codes are given in italic for ease of calculation.

__ � __ __ __ __ __ __ __ __ __ __ __ __ __ __ __

