e Machine Code Programming for the

" NASCOM 1 and 2

O 5 Y A IO

4

e

By:G.R.Wilson

HIRTY

avey
. -
H
-
u
-
0
+
. .
v vasen

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

PREFACE

This book is intended for the novice
NASCOM programmer. The approach is to
take the reader step-by-step through most
of the impressive Z80 instruction set,
illustrating the different instruction

groups with short programs.

Programming home computers is
essentially a creative activity,
requiring both imagination and a

Knowledge of the computer., It 1s hoped
that this book will provide the reader
with the 'nuts and bolts' so that he can
create programs for the use and

entertainment of both himself and othersu

Graham Wilson

MACHINE
for the

APPENDI

a.
CD
d.
el

CODE PROGRAMMING
NASCOM 1 & 2

MACHINE CODE PROGRAMMING
Fi A 1

o vha Al
TOT LG 1w

A Step-by-step Guide

G.R.Wilson

CONTENTS

Number Systems _
Components of a Minimal Microcomputer
Writing and Executing a Program
Loops

Moving Data Between CPU Registers

Mrarradma Tiaka Dakwamann ODI1T anA Mamn
ULl v .Lll\j LA - A L AL 0 ke WS (=N Ly bbb s

Arithmetic and Logic Operations

Skew Operations

Modification of the Program Sequence
The Video Display

Input and Output

tr
z

CES

CPU Registers and Memory Map
Mienlawy nf CDIT ranictorg
l.l.ft_'ltld.\.‘jl LY e da Wt l-\r‘_,-l-b-l»—t-hl.'

Simple I/0 Attachments

Entering and Executing Programs

NAS-S5YS to NASBUG conversion.

1.0 NUMBER SYSTEMS

There are four number systems with which familiarity is
required: decimal, binary, hexadecimal, and binary coded
decimal.

1.1 Decimal

Counting numbers: 0
1
2
3
4
5
6
7
8
9
10 #—— Here, add 1 to next
11 column and restart
12 the digit sequence.
100
Interpretation:
eq. 00 10 Column 'weights'

[

. M

e m—————)

—» 5 x 1 = 005
* 9 x 10 = 090
* 3 x 100 = 300

395

|—t
1
=

;@@ﬁ!ﬂﬂ-------------------q

MACHINE CODE PROGRAMMING
for the MNASCOM 1 & 2

1.2 Binary

Counting numbers: O7Tne two Blnary diglTs
or Dltb -
10 Here,add 1 to the
11 next column and
100 restart the
101 bit sequence.
Interpretation:
eg. 4 21 Column weights
101
' »> 1 x 1 =1
» 0 x 2 =0
™ 1 x4 = 4
ie. 101b = 54 where b signifies a binary numher

and d signifies a decimal number,

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

1.3 Hexadecimal

Counting numbers:

Interpretation:

256

—
A s N el e i e B v vl BT S s P B p R 3 I R VU I O Pl o

—
b

e =
o= et

-/

The sixteen
hexadecimal digits.

!

-*———Here, add 1 to next
column and restart
the digit segquence.

Column weights

|
1

L =13 x1 = 013
—» 5 x 16 = 144

> 2 x 256 = 512

669

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

1 T T Mlems AfF Hoavadas~id
e oo Wl I.Jcnuuc\lllllal

Consider:

|
|
1001 11101
|
)

Observe that 9D

|l —=

10011101

13 x 1
4 x 16

=157d

a} Divide into groups of
four bits, starting at
right-hand enad.

b) write hexadecimal
equivalent of each group
of four bits.

013
144

1574

Thus, 10011101 is more conveniently written as YD. This
gives rise to fewer errors when writing numbpers.

1.4 Note the number of different patterns of U and 1 tThat are
possible using tne following numbers of bits:

No. of bits

of different patterns possilbpble.

16

256
1024 (=1R}
65536 (=64Kk)

e 0 5t 0 O PSP SOpepeomereers s e

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

1.5 Representation of negative binary numbers

Imagine a car mileometer being wound backwards. After
reading 0000 the next number shown will be 9999, It 1is
possible therefore to regard 9999 as representing the number

one-legss—-than-zero, or -1.

If the milometer were in hexadecimal it would roll back
from 00 to FF, which is thus regarded as representing -1.
This method of representation 1is referred to as being

"complementary’'.

Hex Decimal
ir +127
7B +126
D +125
03 +3
0z +2
01 +1
00 0
FF =1
Kl -2
Fb -3
82 ~126
81 -127
50 -128
The largest number is +127 and the most negative number
is -128. (Together with zero this gives a total of 256

numbers as seen on pagde 1-4.)

Note that all positive numbers have the left-most bit of
their binary equivalent equal to 0, while all negative
numbers have it equal to 1.

The weights of an 8 bit '2s complement' number are:

h R oA ! 1 £ A L] 1
=lLG D JL 1V O % L L

eqg. B8a

BT R Y n b

- and 1
[l1e NAoLUVIM 1L & 4

MACHINE CODE PROGRAMMING
for th
1.6 Binary Coded Decimal,BCD
Since much of tne input and output of a system is in

method of coding the decimal digits 0 to 9 is
pure

Aarnrimal cAamoa
b o BRR N

desirable. The most common method is simply to use the

binary equivalents for the digits., Thus:
Decimal BCD
0 0000
1 0uol
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
eg. To represent 1981 in BCD:
0001100110000001
T 5 8 1

1.7 The first few numbers in the different systems.

Hex

iy
01
02
03
04
45
06
07
08

09
4]

s

OB
0C
0D
OE
OF
10
11

1A
4 L

13
14

Dec

0o
01
02
03
04

nr
LY

06
07
08

09
10

-

11
12
i3
14
15
16
17

10
10

19
20

Bin

00000000
00000001
00000010
00000011
00000100

AANAANT N
vuuvuvival

00000110
00000111
00001000

00001001
00001010

W A o aa e wr

00001011
0000110G0
G00G6G1101
00001110
00001111
Guula0ao
00010001
UG0100140
00016011
00010100

1-6

BCD

ud00Goag
00000001
goooo01c
00006011
00060100

ANAANNT N
Uuuvuvulivil

000600110
00000111
00001000

000010601
00010000

00010401
00010010
00010011
(0010100
60010101
00010110

00010111

AN T NANN
VUULLVUWY

00011001
00100600

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

2.0 COMPONENTS OF A SIMPLE MICROCOMPUTER

The components of a simple microcomputer are shown in
e

...... - | THim
4 Ld

13 R aia) +hn rerntral ™ i i
ar Ll Ly 43 W = A EICCESS 1ng unit

{CPU), which 1is the microprocessor itself, two forms of
memory {(RAM and ROM), and a peripheral input-output device

(PIO). These are interconnected by two buses, the data bus
and the memory bus. The data bus comprises eight wires onto
which eight bit ‘'byres' of data may be placed by one

component for transfer to another. The address bus comprises
upto sixteen wires onto wnich the CPU may place a sixteen bit
address for transfer to the other components. In addition
there are a few contrel signals which allow the CPU to
control the other components; for example, the RAM needs a
control signal to tell it whether to read or write,

—

) N/
Es |
© z RPIO. MEMORY MEMORY C.P.U.
: 3 R.AM, R.O.M. aP)
" *3'"“ ‘
; =]
[] |
l_‘; = & o ray Fal]
o~ VAR [}

Contral
signals

CA—

ADDRESS BUS, 16 wires

A Minimal Microcomputer

2-1

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

2,1 Random Access Memory

This 1s more descriptively called read-write memory
since it can receive Gata from the data bus and store it, ie.
data may be wriiten into it, also it can place d&ata on the
data bus, ie. data may be read from 1it. These two
operations are shown in the figure below.

Memory Read Memory Write
;/fﬁ\ ’/P\\
DATA BUS 2F DATA BUS F1
¥ 3
H |
This data has This data Is
previousiy been being stored
l l stored In this {} in this location
Inpatinn |

octr———— T ;T oD 46 4'/2]
oc1z001051114—;/ op4s|i11ic0014

: :
; i
tocation % i? location oT ﬁ]
READ , J WRITE ‘ i
J 1] L
ADDRESS BUS “~~ ADDRESS BUS ~
OC7E OoD45

RAM operations

The RAM may be thought of as upto 65,536 individual
eight bit (ie. single byte) registers. Each register may be

individually accessed by placing its adaress, ie. its
location number, on the address bus.
When the control signal indicates a memory read

operation, the eight bits of data stored at the addressed
location are placed on the data bus. 1In the diagram there is
OC7E on the address bus and 2F stored in location 0C7E. Thus
2F will appear on the data bus,

When the control Signal indicatag a mamaoyry e

1 i1+
uuuuuuuuuu ¥ L S N SRy

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

operation, the eight bits of data on the data bus are written

into the memory location whose address is on the address bus.

In the diagram, Fl is shown on the data bus and 0D45 on the
&

—a La. mis . o1l s 11 R S I - gy TV omm e S e AT AC
55 LUS. J.I.J.U.D; i Willid WG OWE LLLEI LLILY duL gl LUl UL D,

2.2 Read-only Memory

The aoneratinn nf the ROM is nvnr‘*i-'l.v the game as tho roa

il et SR LR

operation of the RAM. The data in ROM is entered by
special process prior to it being used in the microcomputer.

2.3 Use of RAM and ROM

The most useful characteristic of ROM is that its
contents dJdo not dissappear when its power supply is removed.
It is therefore used to hold information which is always
required by the microcomputer. In the NASCOM a program
called NAS-SYS is held in ROM and it is this program which
allows commands to be entered from the keyboard. Another
degirable characterisgstic nf ROM ig that itg contante cannat
be accidentally overwritten.

On the other hand, RAM is wvolatile, ie. its contents do
dissappear when 1ts power supply 15 removed. On first
applying power, RAM locations contain random patterns of 0
and 1.In the NASCOM, as in other machines, the RAM is used to
store the program and data entered by the user.

NAS-SY3, and other ROM-based programs, may be supplied
in either ROM or EPROM. The latter type, Known as erasable,
programmable read-only memory, has a gquartz window in the
package and may be erased by exposure to intense ultra-violet
light. New data may then be written into them by means of a

special device Kknown as a 'programmer’'.

2~3

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

. 2.4 The Central Processing Unit

A diagram of the CPU of the 280 is shown below. The CPU is
essentially a collection of registers for temporary storage
logic unit or ALU which carries

A Al mm mwidkhmardas anA
L AT L F i Y -y r ALl CAL L LLINT W b [Fy L]

out the arithmetic and 1logic operations on data, and the
necessary control circuits.

DATA BUS

a

/ | - Internal Data Bus \
A bk W B|C B [c
D | E | D' E'
HL B
ALU T&
5F
___4;:_a X
x s 4
F }4 F! PC
i
INSTRUCTION REG | Internal
o ” control J
\ CUNINUVL [signals J' /

| 5

control signals

ADDRESS BUS

280 Microprocessor

An instruction is read from the memory via the data bus
into the Instruction Register. The instruction itself isg
then executed by the control circuits. The instructions all

“cause simple operations to occur, such as transferring data
from a register to a memory location, or adding the numbers

in two of the registers.

The 'working reagisters' are the Accumulator, A, the Flag
register,F, and the six general purpose registers,
B,C,D,E,H,L. All these registers have a corresponding
auxilliary register, designated by a ' and all are eight bits
wide.

2-4

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

The Program Counter, PC, holds the address of the memory
location containing the next program instruction. Having
sixteen bits, it can address upto &4K different locations,
(see page 1-4). It will normally be updated automatically by
the control circuits.

The Index Registers, IX and 1Y, and the Stack Pointer,
SP, are sixteen bit registers whose uses are described in

. P T I S S

subsequent chapters, as 1s the function of the eignt bit
Interrupt Vector register, I. The Memory Refresh register,
R, facilitates the use of a particular type of memory and is
of no importance to the programmer.

2.5 Peripheral Input-Output

The PIO simply facilitates the transfer of data between
the ‘'outside world®' and the CPU via the data bus. The
direction of +transfer may be either way. Its use 1is

described in Chapter 11.

Data to and
DATA BUS 4% om theCPU

I
!

: : PIO.

Data to and from
the outside worid

-
esontrol signals

Peripheral Input-Qutput Device

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

3.0 WRITING AND EXECUTING A PROGRAM

3.1 The Instruction Set

A computer instruction refers to an individual operation
which can be performed as a single entity by the logic
circuits inside the cpu.

The instruction set is the complete list of the computer
instructions. It c¢an be broken down into groups, each
instruction within a group referring to a particular type of
operation. The major groups of instructions are as follows:

3.1.1 Moving data from ¢one cpu register to another.

/—PA F egl Transfer the <c¢ontents of
register B to register A.

k_.B C

——D E <
/- \ eg2 Exchange the contents of

register pairs DE and HL.

N en | LV

3.1.2 Moving data between a cpu register and memory.
Nete here the convention of using n to represent any
single byte number, and nn to represent a two byte number.

CPU MEM egl Transfer the contents of
- loc. MEMOLY location nn into
A an register A.
~Dil eg2 Transfer the contents of
— loc. register A to memory location
A.a ¥ inn nn.

3-1

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

3.1.3 Arithmetic and Logic Operations

} egl Add the number in reg
r i o

. R tao tha nmiuimhaor in
= o e numoer n

-

/ . \
/ ALU \ result in register A,

l eg?2 Subtract the number n from

A X‘ the number in register A;
3 : N result in register A,
I

hY

A
n

3.1.4 Program Counter Modification;Jumps

<///// \\\\igﬂ? eg If the result of the
Qﬂ‘? previous operation was zero,

continue from another part of

the program, otherwise continue

NI l with the next instruction in
o

sequence.

3.2 Writing a Program

A computer program is a list of instructions which when
executed in sequence will cause the computer to carry out the
required function.

Instructions reside in either the RAM or the ROM. Each
instruction consists of a pattern of 0 and 1 spread over one,
two, three, or even four consecutive memory Jlocations. The
required patterns of 0 and 1 are written on paper as
hexadecimal numbers for convenience and they can be entered
into the RAM via the NASCOM keyboard, using the keys 0 to 9,A
to F.

When the program is written as a list of hexadecimal

numbers it is said to be written in machine code. The
mamhina AanA~A FAar aoamma Frrmdaal T ok rismblAameo 10 drrymwr Al er
ARLGA %W L1 B 14 LR LW | ey A A R WL \-IHJ-\-HL e lhed el WA L AWl -) SJ-V‘:II T LAY g
80 Add the number stored in register B to the number

stored in register A; result in register A.

1
(1)

Transfer the number in register L to register B.
37 Set the Carry Flag to 1.
The pattern of 0 and 1 represented by the numbers in the

3-2

MACHINE CODE PROGRAMMING

-for the NASCOM 1 & 2

left-hand column, when placed in the Instruction Register
f oA - Tatn T_AN A Hha s ~anneca the Aanoratinne Aacrrihoand
=A== e N Ll 3 A malie Rl p S T il W RO L S R awille TS e L
alongside to be carried ocut.

The list of instructions, in machine code, 1is what has
ta be entered into successive memory locations in order to
load the program.

Writing a program in machine code is very laborious as
there are very many codes Lo remember. As an aid Lo
programming each instruction can be written in mnemonic form.
The mnemonics are easy to remember. After writing the
program in this form it can be translated into machine code
prior to loading it into the computer memory. The full 1list

mE mmaTAaTm A 10 Mmitran A FhAa o Trhelriimatanan oadb
VL O IHMTUINVIL LW D A2 ML VR I eLin. O e A R ¥ I~ =)

Some examples of instructions in mnemonic form, together
with their machine code equivalent and a description of the
instruction are given below.

AE n LD A;n Load register A with
number n.

Cé n ADD A,n Ada the number n to the
number already in
register A,

76 HALT Halt.

L J L J L Wi

Y Y

These numbers

represent the

pattern of 0 and 1

which cause the

Aocirad nnnratigp

These are the desired
operations.

These are short
forms for
describing the
operation.
They are called
mnemonics.

Note that many instructions regquire more than one byte.
These three simple instructions can be used to write a simple
program.

3~3

MACHINE COD
AS

far +ha W
Loy ¥ L W

LWL

PROGRAMMING
M

1 | A
'L - x el

Program 3.1
Program Requirement: To add the numbers 2,3,and 6, the sum
to be in register A,

The programming begins with the drawing of a flowchart. The
flowchart gives a clear picture of the steps needed to
achieve the programming objective.

()

Clear A

Flowchart for Program 3.1

Each rectangle contains a description of one process, ie. a
step towards achieving the programming objective. 1In this
simple example each process consists of only one computer
instruction. When it appears that the flowchart is logically

correci, the program itself can be written.

for the NASCOM 1 & 2

PROGRAM 3.1

LOC'N CONTENTS QP CODE ARGUMENTS COMMENTS

0D00 3E 00 LD A,00H Clear reg A by
loading it with
00H.

0D02 Cé6 02 ADD 4,024 Add 2 into
reg.A

0Do04 Cé 03 ADD a,03d Add 3

0D06 cé6 06 ADD A, 06H Add 6

opog . 76 i HALT ; Halt .sum in

7\ J: —/ reg.Aa
@ & (1)

{1} These columns are filled in first, following the steps
indicated by the flowchart.
(2) The origin of the program, ie.the address of the first
byte of the program is then decided. 1In this example (and
the following ones) the origin is taken to be 0D0O.

(3) The mnemonic code is translated into machine code using
the instruction set. (Note that in the instruction set the
machine code for LD A,n 1is given as 3E 20 since n in the
instruction set is always taken to be 20H. The present
program requires that n is 00H, so the code is 3E 00.
Similarly, ADD A,n is given as C6é 20 and this becomes Cé& 02,
C6 03, and C6 06 in the program.)

(4) Finally the location of the first byte of each
instruction is entered.The program is now ready to be entered
into the NASCOM,

3.3 Loading the Program

Following power-up, the tv screen of a non-expanded
NASCOM 1 will be filled with random characters. Pressing the
Reset button, RS, causes the c¢pu to start executing the
program beginning at location O0000H and this clears the
screen. Expanded NASCOM 1 and NASCOM Z have a power-on reset
circuit which automatically initiates the program at 0G00H.
The program beginning at this location is called NAS-S5YS, and
it is always present in the computer, residing in the EPROM
(or ROM) integrated circuits on the circuit board. The first

A= ~F NMA O _Oowoe 1 =1
parc (o 31 Moo= oio Cigarls wiie Icrech, Puts ug a hea

then waits for a command from the keyboard.

MACHINE CODE PROGRA
for the NASCOM 1 &

MMING
2

To load the program, Key the sequence:

MD00 (nl) Open memory location 0DGO.
0D00 3E 00 {nl) NAS-8YS indicates the current contents

of location 0D00. (This may be any two
hex digits). The sequence 3E 00 (nl)

causes 3E to be written into 1location
nnnn and N0 intn laration OND0O1

W AT W W - e R R - T R I

Qp0z2 €6 02 (nl) erte Cé6 into loc.0D02, 02 into
loc.0DO3.

0p04 C6 03 (nl) €6 into loc.0D04, 03 into loc.0DO05.

0D06 C6 06 (nl) C6 into loc.0D06, 06 into loc.0DO7.

onng 76.(nl) 76 into loc.0D08 and terminate the

loading sequence with the ., before nl.
Note that the underliined characters are cutput by NAS-5Y5.
(nl) indicates the NEWLI E key on NASCOM 1 or the ENTER key
on NASCOM 2. The spaces shown must be keyed in.

MeA o~ L-
E ™

chec s correctly loaded:

Ala \—Ile p ‘J’
MD0OO (nl)

0D00 3E(nl)

001 00(nl})

0Dp02 Céi(nl)

0D03 02(nl)

0D05 03 Uj(nl)
GD06 €6 (nl)
0D07_06 (nl)
QD08 76.{nl)
' if an error is found, simply key in the correct code

| SR ag e
before {nlj).

To execute the program:

EDGQ _ Command to cause the instructions to be
executed beginning with the instruction
in loc, 0DO0O.

NAS-5YS response.dalt led 1lit,

The program has been executed, taking only a few millionths

of a second, and the cpu has halted in reponse to the HALT

command in loc.0DO8,

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2
|

A Qimnm
= -

alacetrary
Lliﬂ*\. l-ll-\—r

It 1is possible to execute a program one instruction at a
time. This is called single-stepping through a program and
it allows the computer operations to be observed
individually. To do this with Program 3.1, press RS to

‘restart the computer (observe that the Halt led turns off)

and then key the following sequence:

Sp00 (nl) Command to single step
. from loc.0DOO

1000 0p02 0Gff hhll ddee 0D02:is the content of the

. . . . program counter and

indicates the laocation of
tne next instruction to be
executed. 00ff shows that
S reg.a contains 00 ana
reg.F contains ff. Thus,
reqg.A has been loaded with

00 by the first
instruction of the
program.

(nl}

1000 OD04 02ff hhll ddee The number 02 has been
added to the content of
reg.A, and the next
instruction will be taken
from loc.0D04.

{(nl)

1000 0D06 0Sff hhll ddee The number 03 has been
added to reg.A. Next
instruction from loc.0DO06.

{nl)

1000 QD08 OBff hhll ddee The number 06 has been
added to reg.A. {05+06=0B

in hexadecimal).
The next program instruction 1is HALT. This will not be
executed when single stepping.

A description of the ¥ 2
in Appendix b; a program to e register
screen is also given. This will be found useful when single-
stepping through programs.

3-7

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

4.0 LOOPS

A program loop is a very common programmlng technlque.
It is illustrated in the following program. .

Program 4.1 .
Program Requirement: To add the numbers 1,2,3,4 & 5 using a
loop.

3
L

.1 could be extended, thus:

/——1—‘\
(Stop)

A Possible Flowchart for Program 4.1

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

While this 1is perfectly possible for five numbers, it
would clearly be very laborious for, say, fifty numbers. A
better approach is toc make a program loop, as follows.

p———i

Clear A

Decreamant C

|]
—Noéh
e
[St)
op

Flowchart for Program 4.1 using a loop

1 A
Lohde d o4

x Program
/.

J

Here, register C is used to count the number of times that
the loop has been executed. It is initially set to 5 and
decremented (ie. reduced by 1) each time through the loop
until it reaches zero. When at zero the decision bhox ({the
diamond shape in the flowchart) changes the program flow to
send it to the instruction to stop.

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

_-— e A

op0o 3E Q0 LD A,00H Clear A.

op02 0E 05 LD C,054 Initialise C.

0D04 g1l AGAIN ADD A,C aAdd C to A.

0D05 oD DEC C Decrement C.

0Dgde Cc2 04 0D JP NZ,AGAIN Jump to¢ AGAIN
if Not Zero.

0Do% 76 HALT

Note that in this program the instruction JP NZ,AGAIN is
used. This will cause the program counter to be loaded with
0DU4 (=AGAIN) if the result of decrementing register C was
Not Zero. Ctherwise the HALT instruction will be executed.
0D04 is the actual address of the memory location given the
label AGAIN. This is a very convenient device as it allows
the jump location to be written in terms of the label rather
than the actual memoiy location, which may not be known at
the time of writing the instruction. Also note that in the
machine code for this instruction, the low order byte is
written first, followed by the high order byte.This 1is the
convention for all such Z80 instructions.

Load the program into the computer memory and check for
correct entry as was done for Program 3.1 then single-step
through the program as shown below.

sSDO0 {nl)

1000 0D02 QO0ff hhll ddee bbce Reg.A has been loaded
with 00.Next instruction
from loc.0D0Z.

- (nl)

1000 0OD04 QQ£f£f hhll ddee bb(5s Reg.C now loaded with 05.
Next instruction from
loc.0D04. '

—{nl}

1000 0DO5 05ff hhll ddee bb05 Reg.C added to reqg.h.
Next instruction from
loc.0DO0S,

- (nl)

1000 0DO6 O5ff hhll ddee bhb04 Reg.C decremented,. Next
instruction from loc.
OD06,

4-3

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

-{nl)

1000 0D04 05ff nhll ddee

-{nl)
1000 0DO5
-{nl)

1000 OANNG
ERVAVEY TR]

-{nl}
1000 0DO04

-{nl)
1000 0DOs
-(nl)
1000 ODO6
-{nli}
1000 QDO4

-{nl)
1000 0ODOS

Y I T
yiia

1000 QD06
~-{nl)
1000 0D0O4

QEff hhll ddee

VEff hhll ddee

UEff hhll ddee

-{nl)
1000 0DOS
- (nl)
1000 0bU6 OF
-(nl)
1000 0DO9

OFff ddee

L=y
[]
[t}

OFftf ddee

ddee |

bb04

bblz

bbil

bb(1l

bbbl

bb0u

Reg. € not vet zero S0
the next instruction will
be taken from loc.0D04.
Second pass through loop
begins.

inird
begins.

pass through loop

Fourth pass tnrough loop

begins.

Fiftn
begins.

pass through 1loop

sero ftlag set.

Since reqg. C 18 now
Zero, next instruction
will be taken from
loc.0DUY. The loop 153

terminated.

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

5.0 MOVING DATA BETWEEN CPU REGISTERS

The simplest movements of data are transfers from one
cpu register to another. Any of the dJeneral purpose cpu

T U T [| . Tm T el cza ki Ll cmcmead msn b - £ [SO M, -
Leglsierl s may Ke 1o4adaeqa wiclt cihie vricencs OL 4any ovnelb, e§g:
78 LD A,B Move contents of reg.B to reg.A.
4C LD C,H Move contents of reg.d to reg.C.

The general form is:
LD regd,regs where regd is the destination register
and regs 1s the source register,

A full 1list of these instructions 1is given in the
Instruction Set.

A cpu register may also be loaded with an immediate
value,eg:

AL 720 TN & A TrAaaAd A DO wrab+ hAa mniymbhAar 200
AP RV v 1di) =) r Vil R AT L 'S ‘.—‘j » ot ¥ o il bl LR TALY ol P N Wil g
The general form is:
LD regd,n where regd is the register and n is an
8 bit numher.

These instructions are illustrated in the following program.

5-1

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

PROGRAM 5.1

Program Requirement: Load reqisters
respectively then
reg.B, reg.B into
reg.D, and reg.D in

ie. Reg Initially

A 1 4

B 2 1

C 2 2

D 4 3
Flowchart:

}

7
o
-

—

A.B.C.D

Finally

™~
o

- 8
il

with

with

r
Q
|2 |»
Wi

with

L

- NE- S
QO @

with

-
©
»
e

!

Save contents
of DIn E

I

Move C Into D

Move B into C

Move A into B

Flowchart for Program 5.1

reg.C into

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

PROGRAM 5,1

-y B A —

LOC'N CONTENTS LABEL OP CODE ARGUMENTS COMMENTS

oDoo 3E 01 LD A,01H Load
oDpo2 06 02 LD B,02H Load
0D04 0E 03 LD C,03H Load
HH] 16 04 LD D,04H Load
oDos 5A LD E,D Save
0D09 51 LD D,C Move
0DOA 48 LD C,B Move
0DOB 47 LD B,A Move
anac 7B Lo A,B Move
0DOD 76 HALT

Single-stepping through the program will show
transters as they occur. _

5-3

myrmoooCGmr

with
with
with
with
in E
to D
to C

to B

01,
02,
03.
04,

-
LU A,

the

data

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

6.0 MOVING DATA BETWEEN A CPU REGISTER AND MEMORY

There are four methods of moving data between a cpu
register and external memory. These are:

Register Indirect Addressing

1. Transfer betwee o eg er and a memor
location pointed to by egister pair HL
ie.register pair HL holds the 16 bit address o
the required memory location.

+
T 0
iy

IND

Trans W regis

pointed to by either register pair BC or DE,
This is similar to method 1 but is restricted to
register A,

ister A and a memory locatiaon

Direct Addressing

3. Transfer between register A and a memory location
whose 16 bit address is given in the instruction
itself. :

Indexed Addressing

4, Transfer between any cpu register and a memory
registers, IX and IY. This is similar to method
1 but uses IX or IY instead of HL.

These addressing modes are illustrated in the programs which
follow.

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

6.1 Using HL as a pointer,
The contents of register pair HL (ie, registers H and L

taken together to form a 16 bit word) are used te point to
the memory location.

eq. LD C, {HL) Load reg. C with the contents of the
memory location whose address is in the
register pair HL.
BEFORE AFTER
¢ s € 58 =
/ -
L H L
" 25 AT 25 A?
!
I
i pata
| Hi points transfer
, to here
|
loc. 25A7 58 - ! loc. 25A7 58 o
Lb (HL),C would cause the data transfer to be in the
opposite direction, ie. from register C to the memory
location whose address is in the register pair HL.

Program 6.1

Program Requirement: Load reg. B from loc.0E00, load reg.C
from loc.0EQ] ;. load 1loc.0E02 from

reg,D,and lecad loc.0E03 from req.E.

ie.
loc. FESYS T——
' g <
FBEG1 >
BED2 = 'D_ﬂﬂ,,—# sf
gEGS | _:__—/

MACHIN
for th
The
inc

E CODE PROGRAMMING

[T =are) " I T

L=RE A F = L =3 —

PROGRAM 6.1

LOC*N

0Doo
0Do2
0D04

0Do07
0D08

0D09

0poA
0DOB

0pocC
0DOD

ODOE

QEQO
OEOL

NN
vouvo

0E03

or an address,

16 7D

1E 7E

21 00 OE
46

23

AE
23
72

23
73

76

Bl
Cl

NN
Lo

00

Note that when an instructi
as in LD HL,OE(00 above, the

placed first.

loc.0EQO) and single-step through it,
B is loaded with Bl, register C with C
program examine memory locations O0EO0 to
(nl) ,etc) and note that 0E02 and 0E03 contain
registers D and E respectively, while
unchanged.

6-3

Load the program (not

on includes

C,(8L)

HL
(4L) ,D

HL
(BL} ,E

forgetting the

program makes use of the INC HL instruction which simply
rements the contents of register pair HL by 1.

SR DRI O
WAL LY LW
Set up pointer
to first datum.
[oad B Erom
lcc.QEQU.

Increment HL sC
that it points
to next datum.
Load C from
loc.0EQL.
increment HL.
Load loc.0EQ2
from reg.D.
Increment HL.
Load loc.0EG3
"

Frmm v
A LWL L_.\jIHO

Data
Data
Reserved for
contents of
reqg.cC
Reserved for
contents of
reg.kE

data area from
Observe that register

n Cl., At the end of the

0E03 (key MEOO
the same as

UEQC and OEQL are

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

When referring to memory locations, it is nore
convenient to use a label for the address rather than the
address itself. Thus, location GEQOD might be given the label
DAT. Then the program could be written:

0D0o4 21 00 CE LD HL, DAT
program as before

UDOE 76

6&60 Bl DAT Bl

Location O0E00 is now labelled as DAT and the instruction

LD HL,O0E00 has become LD HL,DAT since DAT is the label given
to loc.0EQO.

The only rule to observe is that if a label appears in
the argument column, then it must also appear elsewhere in
the ©program in the label column. In this way the label
becomes associated with a particular numerical address, just

as DAT in the example above becomes associated with JEQO.

The addressing method used in Program 6.1 is convenient
when the memory locations tor the data are consecutive, since
it is only necessary to increment HL in order to point to the
next the. if the data Are not in congecutiva memory
locations, the register pair HL must be loaded with a new
address each time.(This is tedious and a better method 1is
described in section 6.3.) The following program illustrates
this point (and also shows the use of labels).

Program 6,2 :

Program Requirement: Load reg.A from location DAT1(=0E00),
load reg.B from location DATZ{=0E(8},
load location DAT3(=0E20) from req.C,
and load 1location DAT4(=0E18) from

reqg.D.

ie.

loc.0EQO o
(DAT 1)

loc.0E08 0“~—--ﬁ‘____“__‘_J; C

(DAT 2) . - »
loc.0E10 - d /
(DAT 3) :

loc.0E18 - —
(DAT 4)

/

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

PROGRAM 6.2

LOC'N CONTENTS LABEL QP CODE ARGUMENTS COMMENTS
0D00 OE CC LD C,CC Load € with CC.
0p02 lé DD LD o,DD Load D with DD.
0D04 21 00 OE LD HL,DAT1 HL points to
' loc.DAT1
0po7 7E LD A, {HL) Move DAT1l into
0D08 21 08 OE LD HL,DAT2 HL points to
loc.DATZ
0DOB 46 LD B, (HL) Move DATZ2 1into
B.
anac 21 20 0OFE LD HL,DAT3 HL points to
: ' loc.DAT3.
O0DOF 71 LD (HL) ,C Move C into
DATS3.
0pl0 -~ 21 18 OE : LD HL,DATA4 HL points to
' DATA.
0D13 72 LD (HL) ,D Move D into
: DAT4.
0014 76 HALT
0EQO 19 DAT1 19
éééé 27 DAT2 27
OE18 00 DAT4 00
0E20 00 DAT3 00
Load the program and data area and single-step through
it. Observe the movement of Jata into registers A and B,

Then
they

examine memory locations 0E18 and 0E20 and observe that
contain the same as registers D and C respectively.

n" nA NEF =ac
A Tl e Bl e ¥

a ntaro
Sl A B o Y B S

nn{
At]

These instructions are very similar to

Program 6,1

and

6.2.

pointers, instead of HL, and these transfers

register A.

eqg. LD A, (BC)

LD A, (DE)

those used in

Register pairs BC or DE are used as

always 1involve

A)
Load reg.A with the data in the memory

location whose address is 1n reg.

BC.

pair

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

LD (BC),A Load the memory location whose address
a . LR v o A DM rrt bl lia Amda e
L2 L1l LC\do HG-J.L L. w i Ll Ll Jdaweaqa L1l
reg. A.

LD (DE),A

6.3 Using Direct Addressing

In direct addressing the actual address of the memory
location (nn) is contained within the instruction. The
transfers must always involve register A,

eqg. LD A, (nn) Load register A from location nn.
LD (nn) ,A Load location nn from register A.
~r T i fRITIM Y
C‘j - pary) n, \L‘ ul.l,(
BEFORE AFTER
- A - . A
. / . 5B
7 .
i M pata
NUM | 5B Num[58 = transter
L] L]
L) -
Thig addressing mode is most often used to transfer a

byte from memory into the cpu. Once the byte is in register
A it may be transferred to any other cpu register using a
LD req,A instruction.

6—-6

MACHINE

CODE PROGRAMMING
for the NASCOM 1 5 2

Program 6.3
Program Reguirement:

To store the contents of register A in
STRA (=0E0QU), register B in STRB(=0E08),
and to load register ¥ from
DATD (=UELl8) , register E from
DATE (=UE1U) .

ie.
L]
- loc.STRA
L
B o 2
= . loc.STRB
) E
b e i
T o loc.DATE
-
[]
. loc.DATD
.
PROGRAM 6.3
LOC'™™ CONTENTS LABEL QP CODE ARGUMENTS CUOUMMENTS
opon 3E ARA LD b, AR Load A with AA.
0po2 06 BE LD B,BB Load B with BB.
oDo4 32 00 OE LD {STRA) ,A Save A in STRA.
0po7 78 LD A,B Move B into A.
opos 32 08 OE LD (STRB) A Transfer to
STRE .
0DOB 3a 18 OE LD A, (DATD) Move DATD to A.
O0DOE 57 LD o,a Transfer to D,
0DOF 3A 10 OE LD &, (DATE) Move DATE into
A.
oplz2 5F LD E,A Transfer to E,.
0pl3 76 HALT
OEQQ 00 STRA 00
QEQS8 og STEB 0o
0E10 1E DATE 1E
0OE18 1D DATD 1D
Load the program and single-step through it. Then
examine memory locations 0OE00 and UOEOQB. Cneck that the

required data transfers have taken place.

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

6.4 Using the Index Registers

Tne index registers IX and 1Y are 16 bits wide and are
used as pointers gimilar to the use of register pair HL.
However, an § bit displacement may be added tc the contents
of the index register to obtain the effective address.

The instructions have the form:

LD {(IX+disp),ceg

eq. LD (14£+6),C
BEFORE AFTER
¢ 4c T
Ix 3160] IxX 3100

e t——— loc.3106 ——» 1C

Ine 1nstruction LD (IX+6),C obtains the sum 310046 and
loaas the contents of register C (=1C} into -memory location
3106.

Program 6.4
Program Reguirement: Load register B with 9B and register C
with 9C, and register D with 7D. Then

Framaof e Fhrm Aantante AF vamdiodrar D O Fn
e L CALLR? & Wa L Ll e WAL LT L L LC\J o LT b | =) LR

location BLK{=0E10), transfer register
C to location BLK+8 (=0E18), and
transfer register b to location
BLE+10 (=0E20).

ie.
/ > loc.BLK
B oB s [c aC o-—-—_._.____________*‘& h o
D 70 &\ > To
e loc.BLK+10

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

PROGRAM 6.4

LOC'N CONTENTS LABEL OP CUDE ARGUMENTS COMMENTS

oDoo 06 9B LD B,YB Load B with 9B.

0poz2 0E 9¢C LD C,9C Load C with 9C.

0pid4 1§ 7 LD 0,70 Loaa D with T70.
0Do6 DD 21 10 GE LD I1Xx,BLK IX points to
loc.BLK.

0DOA DD 70 00 LD (LX},B Move reg.B to
loc.BLK.

oDaoo Dhb 71 048 LD (IX+8).C Move req.C to
loc. ELK+3.

0D10 DD 72 10 LD (1Lx+10},0 Move reg. D to

' BLR+10U

0D13 76 HALT Halt.

GE1U 1] BLX 0o RBesgerved for
data - from
reg.B,

OE18 0o BLK+8 00 Reserved for
data from
reg,C.

0E20 0o BLK+10 QO Reserved tor
data from regq.
D.

w~w n o L . 2 - =T N = am
L Ariii

Note: At location 0004 11X is loaded with BLK({=0E10)
subsequent memory references are made relatlve to this
location by including the displacements 08 nd 10 in
the instructions.

Single step through the program and then examine
locations OE1l0, OEl8, and 0E20 to check that the adata
transfers have taken place. Location UEl0 should

contain 9B, 0El8 should contain 9C, and UEZ0 snhouid
contain 7D.

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

Since the displacement is an eight bit byte it may take
any value between 80H(=-128d4} and 7F({=1274). This allows
ready access to data within a block of 256 bytes, as shown
below:

LOC+127 “\
LOC+126

LOC > 256 bytes

Loc-12?) [toc |

b.4.1 The use of index registers to process data blocks.

Tne use of index registers 1is most efficient when
ing with contiguous locationg in memory, is 2 blegck

deal us locations ¥, le. =2 kK.

Tnis 1s illustrated in the following program.

Frogram 6.5

Program Reqguirement: To move the three bytes in locations
BLKS to BLKS+2 t¢ locations BLKD to
BLEKD+2.

ie.

BLKD+2
BLKD+1

[= 18 "4 »]

el e %

$l4]h

BLKS+2
BLKS+1

BLKS

oley

In the program IX points te the scurce location and IY
points to the destination location.

6-10

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

PROGRAM 6.5

LOC'N CONTENTS LABEL, QP CODE ARBRCUMENTSE COMMEMTE

0po00- DD 21 Q0 OF LD IX,BLKS IX points to
BLKS.

UD04 FD 21 00 OE LD IY,BLKD IY points to
BLKD.

0DO08 DD 46 Q0 LD B, (IX) Load R with
first data
byte,

OD0B FD 70 GO LD {1¥),B ..and transfer.

ODOE DD 23 INC IX Increment

0D10 FD 23 INC 1Y . sboth
pointers.

6D12 pD 46 00 LD B, {IX) Get second

o byte,

0pls FD 70 00 LD (1Y),B ..and transfer.

0Dl8 DD 23 INC IX

OD1A FD 23 INC IY

OplC DD 46 00 LD B, {IX} Get third byte,

OD1F FD 70 00 LD (1Y) ,B ..2nd trancfer,

0p22 76 HALT Halt.

OEQO HY] BLEKD 0aQ Locations

0E01 00 ' 110 reserved

0OEOQ2 00 00 for data.

0Fr00 1a BLKS 1A Data

0F01 2B 2B to be

OF02 3C 3C transferred

Single step from location 0D00 taking particular note of
the contents of IX and IY Then examine locations 0EQ0 to 0EQ2
and check that the data transfers have taken place.

The sequence: LD B, (IX)
LD (IY),B
INC 1X
INC TIY
is repeated for each byte to be transferred. Clearly, for a
block of many bytes this approach is inefficient and a loop
is called for, as follows:

6-11

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

Program 6.6
Prodaram Requirement: To transfer sixteen bytes {from data
area beginning with BLKS to data area

beginning with BLKD.

Initlalise IX toc BLKS

Tnitlalioa IV in RLKD

Initialise counter to 10

to by IXto loc.pointed to by 1Y

Increment IX

Dacramant the counter

A
™ Iscountey
Tres
(St)

MACHINE CODE PROGRAMMING

for the NASCOM 1 & 2

PROGRAM 6.6
LOC'N CONTENTS LABEL OPF CODE ARGUMENTS COMMENTS

0DO00 DD 21 80 QE LD IX,BLKS Point te BLKS.

opo4 FD 21 00 OF LD I¥,BLED Point to BLKD.

opo8g 0E 10 LD C,10H Set C to 10H.

0DOA DD 46 00 LOQP Lb B, (IX) Load byte.

0DOD FD 70 00 LD (1y),B Transfer byte.

0Dl0 DD 23 INC IX

onl2 FD 23 INC IY

0D14 1]7] DEC C

0Dp15 C2 0a 0D JP NZ ,LOCP

0oD18s DF 5B «MRET Return to NAS-
8YS.

GEGO BLKD Sixteen

OEOF bytes.

JES80 BLKS Sixteen

QE8F bytes.

The instruction .MRET (DF 5B) 1is a special NAS-SYS
subroutine to return program control to NAS-SYS, It is used
instead of the HALT instruction and is more convenient since
it avoids having to reset the NASCOM. NAS-8YS subroutines
are referred to in more detail in Chapter 10.

Load the program, tabulate BLKS {locations OEB80 to O0ESF) and
also BLKD (locations OEQ0 to OEOF). Then execute the program
and tabulate BLKD again.

ie. key the sequence:

TE80 ES8F

ASLN

orwo
Lt o

TEQO EOF

BLKD BLKD before transfer.

EDOO
TEQO E10

BLKD BLEKD after transfer.

Check that BLKD after transfer is the same as BLKS.

6-13

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

6.5 Other data transfer instructions

l.

Block transfer instructions.

h
44

I

z
ili

l6kit moves.

The LD instructions described so far move a single
byte. There are several instructions for moving
two bytes. These 1involve register pairs BC, DE,
and HL, the stack pointer 8P, and the index
registers IX and IY.

These allow the exchange of data between the main
cpu general purpose registers and the primed set.

eg. EX AF,AF' Exchange registers AF and AFP'.
EXX Exchange registers BC,DE,HL
with BC',DE',HL' respectively.

MACHINE CODE PROGRAMMING
for the MASCOM 1 £ 2

7.0 ARITHMETICAL AND LOGICAL OPERATIONS

The arithmetical operations include ADD, SUBtract, and
ComPare, while the logical operations include CR,
AND,ComPLement, and XOR.

7.1 Arithmetical Operations

Arithmetic may be carried out using either pure binary
or decimal numbers.

7.1.1 Binary Addition and Subtraction

eg. ADD A,B bdd contents of register B to
the contents of register A.
ADD A, (HL) Add the contents of the memory

location pointed to by register
pair HL to register A.

50B C Subtract the contents of
register C from the contents of
register A.

SUB (HL) Subtract the contents of the
memory location pointea to by
register pair HL. from the

contents of register A,
One of the operands must always be register A and the
result always goes into register A. The second operand may
be fetched using any of the addressing modes described in

Pl AN S A Y M~ o~ AAAT R T A AF e 2 ke miﬁnwﬁ 10 oo
b‘lab‘bc]— L¥ J.I.l‘: DJ.IIIEJ-C Guul-l—J-Ull WL W o ”J—‘- llulllUCLD Py SHLIASYWLD

in the following program.

LOC'N CONTENTS Or CUDE ARGUMENTS COMMENTS

0D00 97 SUB A Clear A.

0po1 06 13 LD B,13H Load B with
13H.

0DO03 0E 27 LD C,274 Load C with
27h0.

0Do05 80 ADD A,B add B to A.

0D0é 81 ADD A,C Add C to A.

opo7 76 HALT

Sinale-gtoanning thraugh thiag nragram will gho h adAdit+d

Hﬂ-ll? HHHHH rr‘-llu ‘—Ll‘-ul-ly‘ T L A WS rll.vg-l-ull LR =T “ F) u“ua.l—a.

taking place. Remember that 130 + 27H = 3AH.

The next program shows how a block ¢of numbers may be
added.

ACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

Program 7.2
Program Requirement: To add a block of five numbers, sum in

-

{ Start)

¥

I nitialise Joop
counterto 5

Initiaise IX
to beginning of BLOCK

ADDA,TX)

increment IX

No loop counter

xi=m -
TES
{ Stop |}

Flowchart for Program 7.2

n the program register B is used as the loop counter
and index register IX points to successive data bytes.

7-2

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

DRAMTDAM 7 9

& AW W LW AR e &

LOC'N CONTENTS LABEL OP CODE ARGUMENTS COMMENTS

QDoo 06 05 LD B,5H Initialise B to
5.

0oDo02 DD 21 00 QE LD 1X,BLOCK IX points to
start of data
block,

0D06 97 . SUB A Clear A.

oDG7 DD 86 00 LOOP ADD A, (IX) Add byte to A.

0DOA DD 23 INC IX Point to next
data byvte.

opocC 05 DEC B ' Decrement
counter.

H314}] c2 07 0D JP NZ,LoCP Locp done?

0OD10 5B .MRET Return to
keyboard.

0EQD 04 BLOCK 04 44

0EQ1 10 10 le6d

0EO2 02 02 24

QEO3 01 01l 1d

0EQ4 20 20 324

By single-stepping through the program the sum can be
seen to build up in register A, Note that the sum is
37d{=55d).

The data bytes could be negative, eg. 1if the first data
bvte (in loc.0E00) is changed to F9H(=-7d)} the sum 2CH(=444d)
will be obtained.

If the sum is greater than 7FH(=+127d) or 1less than
80H(=-128d4), it will be out o¢f the range of the 8 bit
register, and the overflow flag will be set to 1.

The overflow flag,P/V, is a single bit in the Flag

register (regigter F of the cpul. Its state is normally used
to c¢ontrol the program sequence, (The zero flag, Z, has
previously been used in the JP NZ,LOOP instruction.} The P/V
flag may be used to indicate an error due to overflow in the

previous program by adding the instructions shown below.

ADD A, (IX)

JP PE, ERROR Jump to ERROR 1if
overflow flag is
set.

INC IX

éRROu .ERRM Here 1if overflow.

MRET

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

The code .ERRM (DF 6B) is a NAS-5YS command to display
'Brror' on the screen. The program thus becomes:

PROGRAM 7.3
Program Reguirement: As for Program 7.2, but with overflow
detection.

LOC'N CONTENTS LABEL QP CODBE ARGUMENTS COMMENTS

0DoO 06 05 LD B, 5H

0Doz DD 21 00 OF LD IX,B8L0OCK

O0D06 97 S5UB A

GDO7 DD 86 00 LOOP ADD A, (IX)

0DOA EA 20 0D JP PE, ERROR Jump to ERROR
if overflow has
oocurred.

upeD DD z3 INC IX

UDoF 05 . DEC - B

0D1o C2 07 0D JP N4, LOOP

0Dp13 DF 5B «MRET

GDz0 DF 6B ERROR .ERRM

fDz2 DF 5B +MRET

UGEou 38 BLOCK 38

uEul Fo F9

UEU3 05 05

UEC4 10 10

ecute the program first and observe that the Error
i Algn]avad Sinale—gtanninag throuaoh tho nroaagram
is aisplayed. Single-stepping through the program
shows the contents of register A successively as 38, 31, 7C,
81 at which point there 1is a jump to ERROR since 8lH is -127d

which 18 overflow.

BEX
moggana
message

7.1.2 INCrement and DECrement

The Lncrement instruction simply adds 1 to the existing
value, while the decrement instruction subtracts 1.

Any of the addressing modes explalned in Chapter -6 may
be used. Examples <can_be found in the various programs 1in
this guide. -

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

AEAT e e

7.1.3 NEGate
NEG forms the twos complement of the contents of

register A, ie. the number in A is multiplied by =1. This
is illustrated in the following pregram.

Program 7.4
Program Requirement: To form the negative of a number.

LOC'N CONTENTS LABEL Cp CODE ARGUMENTS COMMENTS

0D00 OE 00 LD c,004
0D02 79 LOOP LD A,C
0D03 ED 44 NEG

0D05 47 LD B,A
0D06 0C INC C
0DG7 C3 02 0D Jp LOOP

Single-step through the program and observe that, after
the LD B,A , registers B and C are respectively -x and +x 1in
the twos complement notation described in Chapter 1.

7.1.4 ComPare

This instruction 1is identical to the SUB instruction

except that the contents of register A are - unchanged. The
flags in the Flag register, however, are changed. These
'J.J.a.l_.jb are tcthen ﬁormal;y used u; a oubﬁeque'ﬁu instruction o

determine whether or not a jump should occur.

el v]
Mo

rement: To £find the large
of positive numbers.
in the block 1is -1.

nit r
The last number

Note that rather than specifying the length of the block
and counting the bytes to determine the end, the block 1is
delimited by a number (-1) which will never occur as a data
byte, This allows the data block to be changed without
having to make any change in the program.

The largest-number-so-~far is kept in register B, and
register pair BL points to successive data byvtes in the
block.

MACHINE CODE PROGRAMMING

for the NASCOM 1 & 2
(Start }

N~

k. —————g
Initialise

‘largest—-so-far
to 00

Get next number

SN
Stop new number=-i7%
(e o>
Te

Point
to next number

I

Is
ﬁaw numbe»

“largest-so-far”

-

“Largest-so-far”

—maaris misonbae
TG FIWINWUTR

Flowchart for Program 7.5

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

PROGRAM 7.5

LOC'N CONTENTS LABEL QP CODE ARGUMENTS COMMENTS

0D00 21 00 OE LD HL,LIST HL points to
LIST.

0po3 06 00 LD B,U0d Clear B.

N 75 LOCP LD A, (HL} Get new number.

0D06 FE FF cp : FF Compare with -
1.

0D08 CA 14 0D JP % ,END Jump if egqual.

0DOB 23 INC HL Bump pointer.,

0Dnoc Rg cp B Is new >
largest?

0DOD FA 05 0D JP M,LOOP If no, jump.

0210 47 LD B,A

0D11 Cc3 05 0D JP LOGP

0ODl4 DF 5B END .MRET

0EQO 05 LIST 05

0EO1 49 49

0EO02 32 32

0EO3 48 48

0EC4 70 70

QEO5 6l 61

OEQ6 FF FF

Single-step through the program and observe that tne
largest-number-so-far is in register B,

7.1.5 Multiple Precision Arithmetic

This section may be ommitted at a first reading.

The arithmetic operations described so far involve only
single byte numbers thereby limiting the number range to +127
to -128d. If a larger number range is required the number
must occupy more than one byte and this 1is then termed
multiple precision arithmetic.

Double byte, ie. 16 bit numbers provide a number range
from +32,768 to -32,768, and four byte, ie. 32 bit, numbers
provide a number range greater than 2,000,000,000.

The 2z80 has some instructions for performing 16 bit
arithmetic. However, before considering them, the general
principles involved in handling multi-byte numbers are
illustrated in Program 7.6 using only the single-byte

arithmetic instructions.

Program 7.6 _
Program Requirement: To add two 16 bit numbers, using only
single-byte arithmetic instructions,

17
=

MACHINE CODE PROGRAMMING
for the NASCCM 1 & Z

Let tne number be stored SO tnat tne nhign order byte of
the first number 1s stored 1in location NUML, and the low
order pyte in location wumMml+l. Simiiarly, the second number
is stored in locations NUMZ ana sNUMZ+1, and the sum in SUM
and SUM+1.

Memory
NUM 1 high
NUM 141 low
NUM2 high
NUM2+1 low
SUM high
SUM+1 low
Addition proceeds by first adding the two low -order
bytes and placing the sum in location SUM+l., Any cariy out
from Bit 7 produced by this operation will be stored in the
carry <flag,C. when the two nigh order bytes are added, the
carry also has to be added. Thigs is accomplished by the ADC
{aaa with carry) instruction.

Ve ™~
{ Start)

Add
iow order bytes
-
Store
low order sum
¥
Add highorderbytes
and carry
¥
Stora
high order sum

v

(Stop)

—

Flowchart for Program 7.6

7-8

MACHINE CODE PROGRAMMTING

o F o RLER 0 B L L R =R AL R

for the NASCOM 1 & 2

PROGRAM 7.6

LOC'N CONTENTS LABEL OP CODE ARGUMENTS

0DOO0 DD 21 01 OE LD IX,NUM1+1
0D04 FD 21 03 OE LD 1Y,NUM2+1
0D08 21 05 OE LD HL, SUM1+1
ODOB DD 7E 00 LD A, (IX)
ODOE FD 86 00 ADD A, (IY)
0D11 77 LD (HL) ,A
0pl2 2B . DEC HL

0pl3 DD 7E FF LD A, (IX~1)
0D16 FD BE FF ADC A, (IY-1)
0pl9 77 LD (HL) ,A
OD1IA DF 5B .MRET

0E00 4A NUM1 42

0EO1 38 NUM1+1 38

0E02 2A NUM2 2A

0E03 F8 NUM2+1 F8

0E04 .. SUM ..

OEOS - . SUM+1 LN

COMMENTS

Point to low
order byte of
NUMI1.

Ditto for NUM2,
Ditto for SUM.
Get low byte of
NUM1.

Bdd low byte of
Store low byte
of SUM.

Single-step through the program and note that first of

all 38 and F8 are added to produce 30 (and
4A,2A,and the carry are added to

arored in locations QEQ4 and OEQGS

AR e e i e A e RaaT v w w ImelS T3 MO T

The numbers, of course, may be neg
7 3

EC78 and repeat to obtain 4A3BH+EC SH
{or 190004+ -50004=140004).

ativ
6BUH

|
|
¥+

Carry =1}, then
produce 75, le.
4A38H+2AF8H=7530H {(or 190004+110004=300004).

The sum is

change NUM2 to

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

Sixteen bit subtraction may be obtained by modifying
Program 7.6:-
change loc. ODOE ADD A, (IY) to FD 96 00 sUB {I¥) and
change loc. U0D16 ADC A, (IY¥-1) to FD 9E FF SBC A, (IY¥Y-1).

Set the numbers back to 4A38 ana 2AF8 and run the

modified program to obtain 4A38H-2AF8H=1F40H (or 190004d-

! T My i 3
11000G=8000a). Again, cnange the numbers to 4A3% and EC78 to

obtain 4A38H-ECT78H=5DCUH (or 19000d4--5000d= 240004).

he sixteen bit add and subtract instructions utilise
2ir H an accumulator; ie.all the instructions

g' rp con

v L.

PROGRAM 7.7

Program Requirement: To add two 16 bit numbers, using the 16
pit arithmetic instructions.

PROGRAM 7.7

LOC'N CONTENTS LABEL P CUDE ARGUMENTS COMMENTS

Lo 2 00 OE Lb HL, {(WUM1) Pyt MNODM1 inte
HL.

opU3 EDr 5B 02 OE LD DE, (NUM2Z) Put NUM2z into
DE.

you7 19 ADD fL,DE Add

Ublos 22 G4 (E LD (SUM) HL Store result.

gbuB DE 5B .MRET

J500 39 NUM1 38 NUM1 is

UEGl ~ 4A 4a 4A38

QEUZ Y NOMZ F8 NUMZ is

OEO3 Z2h ZA ZAFB

CEU4 .. SUM .

OEQS

Note that the double byte numbers nave Lo be stored low byte
first. Single-step through the progra and observe that

4A38H+2AF8H=7530H,

Program 7.6
Program Requirement: To subtract two 16 bit numbers, using
the 16 arithmetic instructions.
Subtraction requires a little more care since all the

instructions 1nvolve the carry flag. In this program the
carry flag 1is set to 0 immediately before the subtraction:

this is achieved by the instruction OR A.

MACHINE CODE PROGRAMMING

for the NASCOM 1 & 2

PROGRAM 7.8

LOC'N CONTENTS LABEL UFP COLE ARGUMENTS COMMENTS

¢DOO ZA 00 QE LD - dL, {(NUM1) Put NUM1l into
HI.,

0DO03 ED 4B 02 QE LD BC, (NUMz) Put NUMZ 1into
BC,

0DO7 B7 OR A Clear carry
flag.

onog ED 42 SBC HL,BC Subktract

0D0A 22 04 OE LD {DIFF) ,HL

0Db0D DF 5B LMRET

0EQ0 38 NUM1 38 NUML is

OEQ1 4A 4A 4738

QEQ2 F8 NOoM2 Fg HUMZ is

0E03 27 2A 2AF3

0EO4 s DIFF ..

0EO5 . .

Single-step through the program and observe that 4A3g-
ZAF8=1F40,

MACHINE CODE PRCGRAMMING
for the NASCOM 1 & 2

7.1.6 Decimal Arithmetic

The aecimal digits 0 to 9 are represented in Binary
MAAsaAd MNacsTimal {RCTY cimnlay by Fhoiyr mcoarrscrmandinog miivre bl or
LR Lt - I i = [LW T L=l e ¢ Y e s S e R L IR s S L S O N A 1 B
equivalent, as descrlbed 1n Chapter 1.6. Since only four
bits are required, a single byte can hold two digits as shown

below.

8 bit byte: E

as a BCD digit representing
units. :

i - [—— P e e e e e e L i - Ao e i S
1lic o Ludl Lllo Leploceclll Lile LElls Ulyll.

4
/
//' These four bits may be regarded
e

Frogram 7.6
trogram Requirement: To add 47d and 25d.

LoC's COwTENTS LABEL 0P CODE ARGUMENTS COMMENTS
uisUu ub 47 LD . B,47

wegz 3E 25 LD - A,25

Uda BuU ADD A,B

UiEub 27 DAA

UpuU e 32 00 0E LDy (SUM) , A

upug DE 5B +MRET

UEQO - SUM .

Single-stepping through the program will show that aifter
the ADD A,B 1instruction, register A holds 6C since
475+25H=6CH. The Decimal Adjust A (DAA) instruction converts

the hexadecimal sum to decimal yielaing 72d.

Program 7.6 performs the addition of two-digit numbers
and if the sum is greater than 99 overflow occurs. Decimal
numbers of arbitrary length may be processed simply by using
more bytes to hold the number, This is 1illustrated 1in the

Frnllmwina avammla
LLLLLLL Clj unullltla.\.. -

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

Program 7

Program R

Progra
The

stored in

two digits in DECA+1.

and two

+hoa guam
cng sum,

.?
equirement: To add two four-digit numbers.

First number: e o
loc.DECA DRCATL

Second number: oo
loc.DECB DECB+1

Su_“ Ileoo ' 180 | | (X2 i l

T W— L i i

loc. DECS DECS+1
Most Least
significant significant
digits digits

most significant two digits of the first number are
memory location DECA and the least two significant
The second number 1s similarly stored,
bytes at locations DECS and DECS+1 are reserved for

PROGRAM
LOC'N
0DAa0o

[t B

DO
Do

e L

0po7
0D08
0no9

N nm
LU

0DOF
0D10

nnilz

L T

0D14
D15

. o
« O
»

o

=1 BN LR
[T oss ve «
[BET I LIS)
[BN LI T

OEO1
0E02 .
0E03
0E04
0E05

Any ca
the car

7.7
CONTENTS
3a 01 OE

47

-

28

[
(o5
L=
x|

80
27
32 05

2 NN
[¥ - SR VAN

Do

47
3a 02 QE

RRE

27
32 04 OE
DF 5B

rry out
ry flag.

LABEL

DECA

DECB

DECS

om the tens dig
When the hundreds digits are added the carry

OP CODE
LD

LD

T
Ll

ADD
DAL
LD

TN
s

LD
LD

ang

Daj
LD
+MRET

29
47
52
95

* .

* &
ATV w4
F gy T LW L L =]

7-13

t

MAaE 1A ir
M L LWLl Lkl

ARGUMENTS
A, (DECA+1)

(DECS) ,A

COMMENTS
Get 1ls b
1lst no.
Save 1in
Get 1ls
2nd no.
Add
Adjust.

Store
(Y- o m

[
A W F L)

Ist no.

Get ms b
2nd
Add with
Adjust.
Store

yte of

B.
T v v b o~
L L

yoe O

I;H
Hh e

result.

automatically stored in

MACHINE CODE PROGRAMMING
for the NASCOM 1 & Z

must also be added. This is done by the ADC,add with carry,
instructicn.

if subtraction 1s Dbeing performed the corresponding
instruction is SBC.
The program may be extended to allow arithmetic with decimal
numbers of arbitrary length.

7.2 Logical Operations

7.2.1 Logical AND

NDefinition:

1
x

AND AND AND AND 1

GlGGP‘
s B L]
< S

AnNbDing o bits:
nis is done bit by bit,eg.
0 uo0o01111l1=0F
AND 01 1 00011 =63

$ 0U000D0C11-=203

Tnis example shows how the AND can be used to mask out
selected bits of a byte. The 'mask' in this example 1is O0OF

na consequently only the lowest four bits of the other byte

=1
are alloweda to arop through. This is often used to set
unwanted blts in a byte to zero.

7.2.¢ Logical UK

Nefinition:

L R O

0 0 1 1
UK 0 CR 1 OR O OR 1
0 1 1 1

ORing 4 bits:
This 1s done bl by bit,eq.

.I.l.ll.b

e
bit patterns.

Rl Ta

p——em——————seo - L [[[[]

MACHINE CODE PROGRAMMING
for' the NASCOM 1 & 2

7.2.3 Logical NOT (CPL)

Definition: NOT 0O=1 NOT 1=0

Complementing 8 bits,eq.
00101001-=29
CPL 1 1 010110 =D6
7.2.4 Logical XOR
Definition:
0 0 1 1
XOrR 0O XOR 1 XOrR 0 XOR 1
0 1 1 0
XORing 8 bits:
This is done bit by bit:
egl, 00101111-=2r
XOR 00000110 =206

10011001 (c)

- This example shows that bits XORed with 0 are unchanged,
while hits XORed with 1 are complemented, Thus the most
significant nibble (four bits) of (¢} is the same as the
corresponding nibble of (b)), while the least significant
nibble of {c¢) is the complement of the corresponding nibble
of (b}. The XOR is very useful when a bit has to be toggleaq,
ie.alternated between 0 and 1.

T e o — -7 Fal
Program /.o

Program Requirment: To illustrate AND,OR,CPL, and XOR.
LOC'™™S CONTENTS LABEL OF CODE ARGUMENTS COMMENTS
0Do00 3E OF LD A,QF
0D02 E6 63 AND 63
0Dpo4 F6 2C OR 2C
0D06 EE 06 XOR Ueé
0D08 2F CPL
oDo09 DF 5B MRET
7-15

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

By single-stepping through the program, the result of
each logical operation can be seen in register A.

Thus : 00001111 =0QF
AND 01 100011 = 63
0000 11 =
OR 00101100 =2C
00101111-=2F
XOR 00000110 = 06
00101001 =29
CPL

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

8.0 SKEW OPERATIONS

There are three types of skew operations;

1} logical shift left or right
2) arithmetic shift left or right,
3) rotation left or right.

8.1 Logical Shifts

Logical shifts simply shift the pattern of bits in the
same way as a shift register. ©No account is taken of the
fact that the pattern of bits may represent a number.

8.1.1 shift Right Logical

f

11

eqg. SRL D sh contents of register D to the
Y

i
9

t
4 =
L L

O
V
\
O

Note that a 0 is shifted into bit 7 and that bit 0 moves
into the Carry flag.

m B .1

AL W w oae

Program Requirement: To shift register D right logical.

o

(]
=

LOC'N CONTENTS LABEL OP CODE ARGUMENTS COMMENTS

0DJ0 16 CO LD D,C0 D=11000GGO0
opo2 CBR 3A SHIFT SRL D
0D04 Cc3 02 0D JP SHIFT Repeat.
Single step through the program and observe that

register D takes on the following values in sequence:

COo = 11000000
60 = 01100000
30 = 00110000
18 = 00011000
0C = 000061100
06 = 000060110
03 = 00060011
01 = 00000001
00 = 00000000
00 = 00000000, etc.

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

8.1.2 Shift Left

eqg. SLA {HL) shift contents of memory location to the
left,

0 Momory location

-] nantad $n b\; [T]

= pohtedtonym

Note that a 0 is shifted into bit 0 and that bit 7 moves
into the carry flag.

Program 8,2
Program Requirement: To shift memory location O0F00 to the

left,
ie. REFQRE AFTER
"o el|o o "o F |0 o
Carry flag : Carry flag
/ 00Ol IHI |loc. OFQ0 0 ool Hio
1 F ' 3 E

PROGRAM 8.2
LOC'N CONTERNTS LABEL OF CODE ARGMENTS COMMENTS
I~

goug 21 00 UF LD 8L,0F00

GDU3 36 1F LD {(HL) ,1F

) CB 26 SLA (HL) :

0D07 DE 5B . .MRET To NAS-SYS
Single step through the program and then examine

location 0FO00.

~ Note that 3E 1s twice 1F; the shift has caused a
multiplicaticon by 2. This shift is both a logical and an
arithmetical shift. Its use to multiply by numbers other
than 2 is illustrated in the following example.

Frogram 3.3
Program Reguirement: To multiply a number in memory by 5.

It 1is only necessary here to note that 5x may be
obtained by adding x to 4x(x shifted left twice).

8-2

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

PROGRAM 8.3
LOC'N CONTENTS LABEL OP CODE ARGUMENTS COMMENTS

0Doo 3A 00 OE LD A, (NUM) Get x

0D03 57 LD D,A Save in D
ono4 cCB 27 SLA A A=2%

0Dp0e cB 27 SLA A A=4x

0Do3g 82 ADD A,D Add 4x & x
0D09 32 01 OE LD (FIVEX) ,A

0DOC - DF 5B .MRET To NAS-SYS
OEQD OA NUM 0a 104

0EOQL . FIVEX - _ For 5%

By single stepping through the program it will be seen
that the result 32H (=50d) is formed in register A.

8.2 Arithmetic Shifts

The arithmetic shift left, SLA, has been previously

. QT L S | Il omwn ol 3 o A thmaad 1o~ w A e -
GeESCL IUEU., iilicii au;;u;.u\j dil aricnmecic \._Jlucuu..;l..} Ligricy e

sign bit must be preserved as well as being shifted right,

8.2.1 Sshift Right Arithmetic

ot an T ki ntante nf racictor D riaht
‘—'3. e LN B il A& AR e b B l\-u Ud— l-\.‘j e bt e Y A At Fe A-vlll—r
C.

£t co
ithmeti

mtn
H}J

I_j -

Initial content of register D: 10001001 = 89H = -119d

0|

After 1 shift: 1i000100 = C4H = -o0d
After 2 shifts: 11100010 = E2H = -30d
After 3 shifts: 11110001 = F1H = -154
After 4 shifts: 11111000 = F8H = -84
After 5 shifts: 111111900 = FCH = -4d

Note that the effect ¢f an arithmetic shift right is a
division by 2 {(with any remainder lost). The sequence may be
seen by stepping through the following program.

PROGRAM 8.4 Program Requirement: To shift register D right
arithmetic.

LOC'N CONTENTS LABEL QP CODE ARGUMENTS COMMENTS

opoo 16 89 LD D,89

D02 CB 2A LOOP: SRA D

QD04 €3 Q2 0D P LOOP

8-3

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

8.3 Rotates

Rotates are similar to shifts except that bits shifted
out from one end of the byte are shifted in at the other end.

Botated data may or may not go through the Carry flag.

ROTATE ROTATE

THROUGH CARRY CLRCULAR
RL. arg [i RLC arg :
RLA o= < RLCA C i-e-
RK Arg i ol L RRC arg |
L ' [- .
KRA -‘ RRCA =C

Note that if tne argument is register A, the instruction
may be written 1n two ways:

viz, CR 17 KL A
' 17 RLA

rr

Both have tne same effect on reygister A but whereas the firs
code will cause all tne relevant flags to be affected, the
second code affects only the Carry f£flag, {(Flags are
described 1in Chapter 9.}

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

Program 8.5

Program Requirement:

Flowchart:

To c¢count the number of 1s in a byie
stored in memory. Ie. If the byte 1is
A3 = 10100011, then the program is to
return the guantity 4 since there are 4
bits set in the byte.

N

h

Set bit count to 00.

Get bit pattern

Rotate left circular

J\ .
4"11M_.
~

No

Increment bit count

bt

al bite?

Yeas
{ Retunto

NAS-SYS

Flowchart for Program 8.5

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

PROGRAM 8.5
LOC'N CONTENTS LABEL OP CODE ARGUMENTS COMMENTS

0D0o AF XOR A Clear A

0p01 06 08 LD B,8 Counter

opn3 21 00 0OFE LD . HL,_ PATN

0DO06 CB 06 LOOP: RLC (HL) Rotate

0Do8 D2 0C 0p JP NC,NO1 Jump if bit is
u.

ODOB 3cC INC A Else increment
bit count.

0pocC 05 NOl: DEC B

0DOD Cz 06 0D) JP NZ,LOOP

D10 32 U1 GE LD {(BITS) ;A BITS nolds
result.

0D13 DF G5B +MRET To NAS5-5YS,

UEDO A3 PATN: A3 Data

OEOL .. BITS: .o Result.

Execute the program and then examine location 0E0]l for

3.4 Sixteen bit Shifts

does not include any 16 bit

set Aa
shifts, 1t 1s nonetheless possible to program such shifts.
Register palr HL may be effectively shifted left simply by
adding it to itself: ADD HL,HL. This may be extended to
other register pairs:

Although the instruction

EX DE,HL
ADD HL, BL
EX DE, HL

Register pair HL may be shifted right by:

SRL H 64;»4 ;;Iil
Ey

RR L L

and similarly for BC and DE.

8-6

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

9.0 MODIFICATION OF THE PROGRAM SEQUENCE

Several instructions modify the program seguence by

changing the program counter. The JumP instructions JP START

arnA TR MNP 1lams h=tres boown 14 1
=T A L LY & W e Lled ¥ O [v) W Lll

Jump instructions may be conditional or unconditional.

T [o s Al + 4 PNV e L oo
i t—’ ‘-—V J.\JULJ tJL U\jLGLllD L]

9.1 Unconditional Jumps
[=Ya | ’ "3 m n JPF nm Thig gimnly sancass 5 anmn
=g . L2 M n w & nm Lils Ss1MpLly <Caugses a Jump

to location nm from where the next inspruction will be taken.

18 e JR e This 1s a jump relative to
the program counter. It causes a Jjump to location PC+te,
where PC is the current content of the program counter: e is
a single byte number in the range -128d to +127d so¢ that
jumps are limited to within this range. Note that tihe
current content of the program counter is always the aadress
of the first byte fellowing the JR instruction.

The relative Jump, JR, is generally preferable to the
absolute jump, JP, since the jump will be to the correct
location wherever the program is placed in memory. It also
requires only two bytes instead of three. However, 1t takes
longer to execute and calculation of the displacement, e,
requires some care. (This last point does not apply, of

course, if an assembler program is being used.)

9.2 Conditional Jumps

The jump will only occur
t. ge o ogst common use

if the specified condition
re

se S i
is me Thao f mos are given below,
* JP Z,nm Jump to location nm if result was Zero.

* JP NZ,nm Jump to location nm if result was Non-Zero.

JP P,nm Jump to location nm if result was Positive.

JP M,nm Jump to location nm if result was Minus.
* JP C,nm Jump to location nm if result set the Carry flag.
* JP NC,nm Jump to location nm if result did Not set the

Carry fiag.

»

These instructions may also be relative jumps.

While many instructions affect the state of the flags
and s¢ will determine whether a subsequent conditional Jjumg
will occur, it must be remembered that this does not apply to
all instructions. Thus, virtually all the LD instructions do
not affect the flags. Should the flags be required following
gsuch an instruction, an instruction which does affect then
but does not change the data sheuld be inserted, cg. AND A
sets the flags according to the byte in register A but does
not change the contents of register A.

9-1

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

9.2.1 The Flag Register

Register F is simply a collection of flip-flops "h
are changed by many of the 280 instructions.
of the Flag register is given below.

Flag register format: |s|z] x| B x{p/V{N]C|

S...8ign

Z2...2€10

H...DAA half-carry
P/V.Parity/Overflow
N...DAA add/subtract
C...Carry

Y

nrt 11oasA
LI R d et e Wl

Sign flag 5 is set if an operation caused bit 7 of the
result to be set. Since positive two's
complement numbers have bit 7 egqual to 0 and
negative numbers have bit 7 equal to 1, the Sign
flag indicates the sign of the result.
Arithmetic, logic, and skew operations affect
this flag. '

Zero flag Z is set 1if an operation caused the result to he
ZEero. Arithmetic, logic, and skew operations
affect this flag.

Carry flag C is set if an arithmetic operation produces a
carry (or no borrow) from bit 7 of the result.
It is also affected by the skew operations.

= o
ty/COverflow flag If an arithmetic uyx:Lat.J,uu causes

overflow then P/V will be set. Overflow occurs

when the addition or subtraction of two numbers

produces a result outside the number range -128d

te +1274d. This flag also indicates parity

FAllnwinc log1r1::|1 0 ions,

H & N flags These are used by the Z80 to carry out decimal
arithmetic and are of litle importance to the
programmer.

The operation of the Sign and Zero flags is
straightforward, as shown in the following program.

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

PROGRAM 9.1
LOC'N CONTENTS LABEL QP CODE ARGUMENTS COMMENTS

oD oo 97 S5UB A Clear A.
0Do1 ce 27 ADD 27H Result 27.
ona3 D6 30 S50UB 304 Regult -3.
0DO5 76 HALT

4

Single step through the program and note that the A and
F registers take on the following values:

S ZXHXP/VNZC Flags set
After DOO, 2 =00 F =01 xxx 0 10 ZN
AL . TWAY n — Lp T S - TRy | L4 BT R - fal f'a}
ALLSL WJYlL, & = L4 ' = V U A A A U A W
After D03, A=PFDF =10xxx 0 11 SNC
The Carry and Overflow flages require a little attention.

The Carry flag, C, may be regarded as a ninth bit at the
left-most end of every byte, while the Overflow flag, P/V, 1is
most commonly used to indicate arithmetic overflow. It does

not always follow that a carry into C (ie. out of bit 7)
indicates an arithmetic overflow or vice versa. This is a

consequence of two's complement arithmetic.
Although the microprocessor arithmetic operates on bit

patterns as though they are signed binary numbers (1ie. in
two's complement), the programmer may often regard the bit
patterns as unsigned numbers in the range 0 to 255d, as for

example when using multiple-precision arithmetic. Consider
the following examples:

eqg 1. Meaning if Meaning if Binary
unsigned signed arithmetic
7F +127 +127 0111 1111
ADD 02 +002 +002 0000 001iu
+129 +129 C=0=-1000 0001
S=1l<e
pP/v=1
There is no carry produced so C=0. If the programmer

interprets the bit patterns as signed binary numbers, then
the additilon of two positive numbers hag produced a nhegative
result, (-127d in fact) and this is signalled by P/V=1.
However, if the programmer interprets the bit patterns as
unsigned binary numbers, then the result is correct.

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

eg2. FF +255 -001 1111 1111
ADD (2 +002 +002 0000 0010
+257 +001 C=1=-0000 0001

S=0=]

P/v=0

occurred, P/V=0,. If the programmer is using signed binary
numbers the result is correct; if using unsigned numbers the

C fiag indicates that the result is greater than 255.

A carry out has been produced, C=1, but overflow has not

eg3, 0l +001 +001 0000 0001
SUB 02 +002 +002 0000 0010
-001 -3001 C=1=-1111 1111
S:l‘_l
P/V=0
Here, P/V=0 signifies no overflow of signed binary
numbers. Since this is a subtraction, C=1 szignifies "no
borrow” required from a higher order byte.
eg4. 81 +129 =127 1000 0001
SUR 0% +002 +002 0000 0010
+127 -129 C=0«-0111 1111
S=(=
P/V=1

Here, the P/v flag indicates signed number overflow.

Short programs to illustrate these example are left as
an exercilse for the reader.

9-4

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

9.3 Jump to Subroutine,CALL

eg. CALL mn Jump to the subroutine begining at
lecaticn mn and when finished
continue with the instructicon

immediately following the CALL.

Some programs make use of a particular sequence of
instructions more than once, for example, it may be reqguired
to multiply two numbers at various points in the program.
Such programs may be written in either of the two following
ways.

////////// \ ""i.i.al'\il"'f

=

; Identical i
routines
to mulipiy CALL MPY
/////////////// JP?{/!}'!!I{'!?}'!}'\

///////// / } Subroutine

//////e//////A

Program with instruction Similar program with

seguence to perform multiply routines replaced

mirTEamTl 1 rmabkamrm vt b mm ey CATT ki T W My =

UL L LLHJ.J.UG\.J-V!I wE L L L1l U} LY o N i 1w A L.

out in full twice, instruction sequence to
perform multiplication has
been written as the

subroutine, MPY.

When the cpu encounters the instruction CALL MPY it will
jump to location MPY and execute the instruction in that and

following 1locations. When the instruction RETurn is
encountered in the subroutine, the cpu will jump back to the
instruction immediately following the CALL MPY. As many

calls to the subroutine as required may be written into the
*main® or "calling" program.

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

Program 8.3 (page 6-2) multiplies a number by 5; it will

‘Nnow be written as a subroutine.

PROGRAM 9.2

LOC'N CONTENTS ILABEL QP CODE A
0DGo 06 01 LD B
0D02 78 LD A
D03 CD 00 OE LOOP: CALL X
0D06 4F LD C
OD07 04 ING R
0DO8 C3 03 0D JP L

jMultiply contents of A by 35,

product in A. Uses D.

0EO0 57 X5: LD D,A
0E01 CB 27 SLA
UEG3 CB 27 SLA
Q805 82 ADD A,D
UEO6 C9 RET

Single step through the program and note that when the

instruction CALL X5 is executed, the
the wvalue Q0EQQ, +he 1location of
subroutine, Observe that register
holds 5x where x is 1,2,3,etc. The

table in hexadecimal is given below.

05
0A
OF
14
19
1E,etc.

U Uy uoun o
E -
O U7 s 0 N |~
mmanuon

Program Counter takes on

s e d e 4 - e P
S oy L Lnyg UL tne

B holds X and register C
start of the 5 times

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

9.4 Saving Data on the Stack

The stack is an area of memory defined by the programmer
and used to store data temporarily. It 1s a very convenient
mechanism. Data 13 stored on the stack Dby the PUSH
instruction and retrieved by the POP instruction. The data
POPped from the stack is always the last data that was PUSHed
onto it, ie. the stack operates as a Last 1In, First Out
(LIFQ) buffer store.

Suppose the programmer defines the stack area as memory
locations 1000H and below. Tnen the Stack Pointer, 3P, must
be loaded initially with 1000H. The situation is then as
shown below.

tar 4000 l Stack pointer points to
'--;;;; the current “top" of the
OFFE spP 1000 stack.
OFFD

After execution of PUSH BC , the stack looks like:

The Stack Pointer is

'°°[222 — - decremented and the
Orrr 25 (14 contents of register B
OFFE 9C ollll stored in the location
QAEED . pointed to by the Stack
m gC Pointer. It is then

) decremented again and the

\ contents of register C(

stored in tne next
location down.

MACHINE CODE PROGRAMMING

for the NASCCM 1 & 2

After execution of PUSH AF,

loc. 1000
OFFF 58
OFFE 9C
- OFFD 8A
6F

1

o
,I
o
T

After execution of POP DE:

loc.1000
OFFF 55 =
OFFE 9C -
OFFD 8 A
6F ®sA F6F
%

After execution of POP HL

1000

OFFF 5B

OFFE 9C

GFFD 8 A
6F
3

sp

"sB ['oc

the stack looks like:

SP is decremented and the
contents of register A
stored in the location to

which it points, SP is

then decremented again and
ths contentg n'F rng*lei'nr P

e

stored in the next
location down.

The data in the location
originally pointed to by

SP has been transferred to

register E, SP incremented
armaA +ha .r:l:-l-a Fhaoan

LA ldva \—l-l\- Tl b Bl

to has been transferred to
register D,

maintod
rv e B A S T Tl

The data 1in the location
originally pointed to by
SP has been transferred to
register L, SP incremented

o e A lhoa Aok
aliid LIS wWdLa

to has been transferred to
register H,

Fhanm nainmntad
Ciienl POLILCeq

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

In practice, the programmer need only have regard
the order 1in which data has been PUSHed onto the stack
to a lesser extent, the depth of the stack itself. This
peint is to prevent the stack area encrocaching onto an

of memory used for some other purpose.

for
Caante F
last
area

The stack is most useful for saving the contents of cpn

registers, so freeing them for another use, and
restoring them to their original contents 1in order
TR ﬂ_s

roceed. NAS 5 the Stack Pointer f iouug,
procee 3 Ointer to 100UH

!
4]
U
T
-

then
to

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

10.0 THE VIDEO DISPLAY

10.1 Writing to the Video Display

Several of the subroutines in NAS-SYS facilitate writing
to the display. The following program uses subroutines
.BZHEX, .SPACE, .CRL{, and .MRET,

B7HEY digmlavs the contentsg of r.mr11=::i-nr A on the gcrean

- L R ki R e - e ad = B

in hexadecimal, It 1is called by the cocde DF 68.
Register A is modified by this routine.

.SPACE moves the cursor on one place so displaying a
space. It is called by the code DF 69. Register
A i1s set to 20H by this routine.

(@
o]
=
T

positions the cursor at the beginning of the next
line, ie. it performs what on a printer would be
Carriage Return & Line Feed. It is called by the
code DF 6A. Register A is set to ODH by this
routine.

Note that NAS-8YS routines are regarded here as
additions to the 780 assembly code and are distinguished by
their beginning with a full stop. Thus, .CRLF is regarded as

A4

&
20 mis 1 e leTslel mMraAmAar 1o Mo

code DF b6A. In fact, the code DF 6A is:-

DF RST 18H Call subrouitne at 18H,

bA DEFB 6AH Define a byte.
That ig, it is a call to the subrontine beginning at location
0018H (in WAS-5YS). This subroutine, called SCAL, wuses the

byte in the Jlocation following the RST 18H instruction, in
this case 18H, to jump to the location where the subroutine
to produce a carriage return and line feed actually starts.
For present purposes it 1s best simply to regard these
commands as addditions to the Z80 code.

PROGRAM 10.1

Program Requirement: To display the five times table on the

screen.

LOC'N CONTENTS LABEL 0P CODE ARGUMENTS COMMENTS

Qpoo 86 01 LD 2,01 Initialice B to
1.

0po02 78 LD A,B Transfer to A.

oD03 DF 68 LOOP: .BZ2HEX Display A.

0DO05 DF 69 .SPACE Write a space.

ono? 78 LD A,B Restore A.

0Do0s CD 00 QF CALL X5 Multiply
subroutine,

A-1

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

O0DOB DF 68 .B2HEX Display
product.

0DOD DF 6A .CRLF New line.

ODOF 04 INC B

CD1G 78 LD AR

0D11l FE 0E CP 0B Finished?

0D13 C2 03 0D JP Nz, LOOP No.

0D16 DEF 5B .MRET Yegs,return to
NAS-5Y¥5.

S sMultiply number in A by 5.

0800 57 X5: LD D,A

(E0L CB 27 SLA

NEO032 CR 27 SLA

QEO5 82 ADD A,D

OEQ6 c9 RET

Execute the program and see the five times table in
hexadecimal.

10.2 Reading the Keyboard & Displaying a Character

The keyboard may be read by using the NAS-5Y5
subroutine, .BLINK, called by the code DF 7B, This
subroutine scansc the kevboard repeatedly until a key 1is
pressed, and then places the ASBCII code for the character
into register A.

ASCII, or American Standard Code for information
Interchange, 1is an accepted standard for coding alphanumeric
characters. Program 10.2 displays the ASCII code for the

o A e L

kevboard characters,

PROGRAM 10.2

Program Requirement: To read the keyboard ang display the
character and its ASCII code.

LOC'N CONTENTS LABEL OP CODE ARGUMENTS COMMENTS

0D0O DF oA STaART: LCRLF Newline

0DO02 DF 7B .BLINK Get character
0DO4 F7 .ROUT Display it.
6DO0S F5 PUSH AF Save A since
0D06 DF 69 .SPACE .SPACE uses A,
T £l pPOpP AF Restore A.

0D09 DF 68 .B2HEX Display code.
0DOB C3 00 0D JP START

Note that since register A 1is wused by the routine
.SPACE, its contents are saved on the stack before calling
the routine. Register A is then popped from the stack
immediately afterwards.

A-2

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

Execute the program then press any of the keys and
compare the codes with those given in the table Dbelow,
Observe that pressing 'G' displays 'G 47' , ie. 47H is the
ASCII code for the character 'G'; pressing SHIFT G displays
'g 67' where 67H is the ASCII code for character 'g' .These
codes and others should be found in the table. Note that th

Ml

commercial 'at' key produces no effect unless shifted, This
key has a special function, it is the CONTROL key.

Lse:0 1 2 3 & S5 6 7 8 9 A B C D E F
MOR AT. AB} gooa Doa1 e o 0100 ot o1 ans 1600 1001 1010 1 T 0 1181 1 HE
Moo - A AX = b | on on | ot oo | o6 oo | Lk Do | ns na | e ol | ok OB | 06 oa | ow Dn o0 | b pa |od oo | oa wa)

ag CHS
[1%l
N 0o
= LG
- LIt M |
o kAL LI [a1bl L]
LR THE
H a3
I
L2
2 010
. - ' IR E : "
LIl ta EL RN
3 an
L* L
=
5 (L1
HE
6 LAY
. NCH
e
7 "
= Shatred chacscint The charec b it i tacd (hrem rowet 1o A a0 the 1o af b Funt and ATT 2t 1N oot 1.

Codes for the NASCOM character set

The effect of the CONTROL key may be observed as
follows: press CONTROL ; , ie press €; together, and observe
that instead of the character ';' (ASCII 3BH) being
displayed, '{' {(ASCII code 7BH} is displayed. Try again with
@, and @/ . The effect of the CONTROL (@) key is to add 40H
to the code for the keyed character, Iie. the displayed
character is four rows down the column in the table., This
fact may be used to display some of the graphics c¢haracters;
press @G to diplay the 'bell' character, (ASCII 07H), since
four rows down the table from 'G' (wrapping around from

bottom to top) brings the code to (07H.

A-3

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

However, not ail the graphics <characters «can be
displaved in this way, as many of the codes (including those
from 11H to 18H) are interpreted by .ROUT as screen editing
commands. The effect of these is shown 1in the following
program which places all possible codes in Lurn 1nto register
A before calling .ROUT .

PROGRAM 10.3

Program Requirement: To display al
o 1 v v o m
[1S \.-UJ.J.CDB

U

1 possi
ondin

1
PR Y

le ASC
h ct

Pl ol
1AL

I codes and
s

g @

¢

-1 "
LI A 1

Because .CRLF and .B2HEX modify the contents of register

A, the incrementing count is kept 1in register < ana
transferred to register A when required. The subroutine
RBI.TNK is included n1mn1v to allow the rcodes and characters

- A A mE A -—— g 0 LA T VLS L) au LW —eel ST S el Qe iz 2

to be displayed at a speed determined by the user. The space
bar or any character key must be pressed before the program
proceeds to display the next code.

LOC'N CONTENTS LABEL QP CODE ARGUMENTS COMMENTS

0DO0 OE 00 LD C,0H

0D02 DF 6A NEXT: . CRLF

0DG4 79 LD a,c

0D05 DF 68 B2HEX Display code
0D07 DF 69 .SPACE

0D09 79 LD A, C

0DOA F7 .ROUT Display char
0508 e INC C

0DoC DF 7B -BLINK Wait

0DOE C3 02 0D JP NEXT

Execute the program and ohserve that while the character
corregponding to the ASCII code in register A is normally
displaved, some codes produce screen editing commands.

Thus, code 00H preoduces no effect,

0BH produces a backspace,

OAH produces no effect,

0CH clears the screen,

0DH produces a carriage return & line feed,

11H moves the cursor left,

1Z2d moves the cursor right,

134 moves the curser up,

144 moves the cursor down,

15H deletes the character at the cursor

(and moves the rest of the line left)

16H wmoves the line to the fightf :
17H moves the cursor to the start of the

current line,
18H produces a carriage return (unless the cursor

is at the start of 2 line),
IRH delates the current line,

Observe that code 80+x always produces the character

A-4

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

having code x, even if code x is a screen editing command.
Thus, 8DH is displayed as the character left-arrow not as a
carriage return & line feed (= code UDH}.

n

T OAafFlor
] Lc

50 are De 1::nr ROET, anA THET.

1 L

Subroutine JRDEL produces a delay proportional to the
number in register A. If A 1s set to =zero before calling
.RDEL, the delay is about 5.4ms, (2.7ms on NASCOM 2). It may
be called many times to produce longer delays. The following
instructions produce a delay of about 1 second, by calling

.RDEL 185d(=B9H) times.

06 B9 LD B,B9
FF DLY: .RDEL
10 FD DINZ DLY

-"I nnnnn + ~F roa~1ebRoar h 1c

Note that the i ti content oL ey ister it
insignificant in this program since register A is set to zero
by the first call to .RDEL . The instruction DJNZ DLY
decrements register B and, if it not then zero, causes a
relative jump to DLY.

T~ A instructions may he
may

il

11

en as a outine

t subr i
on CALL ONESEC wi

AN IR W | S - - R . 1

wri
called OUNESEC, and then the 1instruct
produce a delay of about one second.

t
i

I—‘I'D

1

Subroutine .TDEL (called by code DF SD) produces a delay
of 2.7s (L1.35s on NASCOM 2) by calling .RDEL 512 times. It

also sets registers A & B to zero.
The previous program slowed down the display of codes by

waiting for a Key depression; the [ollowing program irepliaces

the keyboard scan by ONESEC .

PROGRaM 10.4

Program Reguirement: AS Program 1G.3 but utilising a
software delay.

LOC'N CONTENTS LABEL OP CODE ARGUMENTS COMMENTS

0DO0 0E 00 LD c,0

QD02 DF 6A NEXT: -CRLF Newline.

ong4 79 LD A,C Next code.

D05 DF 68 .B2HEX Display code.

0D07 DF 69 .SPACE

0D09 79 LD A,C

0DOA F7 .ROUT

QDOR ac INC C

0DoC CD 00 OE CALL ONESEC

0DOF C3 02 0D JP NEXT

-
.

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

EH ;Subroutine to provide one second delay.
t1s ;Sets register A to zero.

OEO0OQ 06 B9 ONESEC: LD B,BY

QEO2 FF DLY: .RDEL

0EC3 1¢ FD DJINE oLY

0EO0S C9 RET

Execute the program and observe the one second delay

hetweon tha rndag

. wrar e ww A wraanr wew waeaT e

10.4 Wwriting Messages on the Screen

It is frequently useful to write a mes:
in the course of a program. Two wa
illustrated in the following examples.

10.4.1 Programming the message

PROGRAM 10.5

Program Requirement: To read a characte
and display on the
(keyed character)".

from the keyboard
creen "You typed

LOC'N CONTENTS LABEL OP CODE ARGUMENTS COMMENTS

oDoo DF 7B .READ: .BLINK Read keyboard

QDDZ QB EY .B.F PF Save A in A'

0D03 2] 00 OE LD HL,M5G MSG is start of
message.

GDie 7E WRITE: LD A, (HL) Get first
character.,

0oDOQ7 FE 24 Cp 24 Is it §7

0D09 CA 11 0D JP Z,CHAR Yes,jump.

0DOC F7 «ROUT No,display

ODOD 23 INC HL Point to next
character.

ODOE C3 06 0D JP WRITE Continue

0Dl11l 08) CHAR: EX AF,AF' Message done,

restore Keyed

characiter Lo A,
0D12 F7 .ROUT Display

character.

0D13 DF eA .CRLF
0D15 DF 6A .CRLF
0D17 C3 00 0D JP READ

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

0EOD 59 6F 75 MSG: Y ou
0EO3 20 74 79 (sp) t ¥
QEO6 70 65 64 o e d
0E09 20 24 (sp) §

™ - e

m location O0D06 to UD15 inclusive, together
with the message itself (locations OEQ0 to OEGA), forms a
general routine to write a message. Register pair HL is
initialised to the address of the start of the message code

and then succeeding bytes are transferred into register A and

i - P R A s
LIl LUucT LLyY
1

displayed using subroutine ,ROUT. 1In order to detect the end
of the message, a ‘'delimiter' character, in this case '$'
{code 24H) 1s used. On receipt o©f this character, the

program ends the message printing routine.

An alternative way of detecting the end of a message
would be to count the number of bytes in it and then digplay
that number of characters. This is most conveniently done
using the LDIR instruction. However, the character count
must De changed whenever the message is changed. The use of
a delimiter character is thus more convenient.

10.4.2 Using the Print String Subroutine, .PRS

The NAS-5YS subroutine .PRS provides an alternative
method for writing messages. It is only necessary to program
the instruction .PRS (code EF) followed by the ASCII code for
the message delimited by 00H. The following program uses
this method.

PROGRAM 10.6
Program Regquirement: As for Program 10.5 but using
subroutine .PRS.

LOC'N CONTENTS LABEL OP CODE ARGUMENTS COMMENTS

opoo DF 7B READ: BLINK

0DG2 08 EX AF,AF’
GDO03 EF . PRS

0D04 59 6F 75 20 Y o u (sp)

0D08 74 79 70 65 type

0DOoC 64 20 00 d (sp} 008

ODOF 08 EX AF,AF
0D10 F7 . ROUT

0Dli DF 6A .CRLF

oDl3 DF 6A .CRLF

0D15 C3 00 oD JP READ

Execute the program and observe that it has the same
effect as the previous one.

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

NAS-SYS provides an additiecnal facility for entering

Mmac e aas bycr allrmwdne rhe H1rcu‘-i— antr r\'F LOOTT nhnrnﬁi‘nr‘c
All\-uuu\j\.-u UJ u&*v!r&l‘j b d S ll\-l—l uuuuuu

Thus, when entering the program above into memory, locatlons
0p04 to 0DOD may be entered as

(XY, 0,0, (sp),t,y,pre,d,{spP) _ -
The corresponding ASCII codes, as shown in the program, will
automatically he entered.

Screen editing commands may be written using .PRS. The
following program is given simply as an illustration.

PROGRAM 10.7 '
LOC'N CONTENTS LABEL OF CODE ARGUMENTS COMMENTS

0D00 EF START: L.PRS

0D01 2A 08 08 * BS BS

0po4 12 23 00 COR * GO

0po7 06 18 LD B,18H
0D09 FF DEL: .RDEL

0D0A 10 FD DJINZ DEL
0DocC C3 00 0D JP START

10.5 Organisation of the Display

The NASCOM display is said to be 'memory mapped'. The

e N - e

screen is divided into 16 lines, each capable of displaying
48 characters. Each of the 768(=16x48) printing positions
corresponds to a location in the video RAM. The screen may
be regarded as a window through which the contents of the
video RAM may be viewed. The character generation circuit
produces on the screen the character whose ASCII code is in
the corresponding location in video RAM, as shown below,

The ASCIT code in this location
always appears at this position

mem Bl m o mmam -
O LUw 3Ll TwEiL

ot /A

vovo
/ Character —
N Generator >R

T?/ v 1. T LT
0A2D 52— | _

52H ls the ASCIT code
MEMORY for the letter R. . SCREEN

The Memory-Mapped Screen

It is thus possible to write a character on the screen
in any peosition by loading the memory location corresponding

A-~8

MACHINE

CODE PROGRAMMING

for the NASCOM 1 &
to that position with the ASCII code for the character. A
map of the screen showing the actual memory addresses is
shown below.
| OBCA 0BCB OBCC OBF8 OBF9
080A 080B 080C0838 0839
084A 0B4B 084C0878 0879
088A (088B 088C08B8 08BY9
08CA 08CB 08CC08F8 (08F9
0B8A 0BSB 0B8C0BB8 OBBY
Map of the Videco RAM Addresses
Note 1: The top row (locations OBCA to O0BFY9) is not
scrolled.
Note 2: Some 1locations, those 1in the 'margins', are not
displayed.
A simple, though inelegant, method of writing to the
display 1is to 'poke' the appropriate character code into the
video RAM, as shown bhelow.

PROGRAM 10.8

Program Reguirement:

LOC'N
0D00

OD03
0D05

0D06
0Do8
0Do9
0DOB
0DacC
ODOE
ODOF
0D11
0plz
0Dl4

CONTENTS
21 DF OB

36
23

4E

41

To display the message

middle the top line

LABEL

of

0P CODE
LD

LD
INC

ARGUMENTS
HL, OBDF

(HL) ,4E
HL

(HL) , 41
HL
(HL) ,53
HL
(HL) , 43
HL
(HL) , 4F
HL
(HL) , 4D

‘Nascom’
of

O in the
the screen.

COMMENTS
OBDF the

T Aamankamm AF ke
AW LWl WL L=y ¥4~y
of

middle the
top line.
4E="'N"
Point to
printing
position.
41="a’

next

53='s'

43="'¢!

MACHINE CODE PRCGRAMMING
for the NASCOM 1 & 2

address in the video RAM corresponding to where the first
character of the message is to be displayed. The ASCII code
for 'N' is then loaded into this location, HL incremented and
the ASCII code for 'a' loaded into the video RaM. This 1is
repeated until the complete message is displayed.

By single-stepping through this program, the message
will be seen to build up on the display. ({Clear the screen

first.)

It is particularly usetul to write headings and titles
on the top line of the screen since this 1line, unlike the
otherg, 1is not scrolled up, therehy leaving the message on
the display. However, NAS-8YS subroutines .RQUT and .PRS do
not allow writing to this line so it is necessary to poke the
video ram locations with the regquired code. A more elegant
method of doing this is described in the following section.

10.6 Single-step Headings Program

A more efficient method of writing messages 1is
illustrated by the program in Appendix b, which displays the
headings for wuse when single stepping through programs. In
that program, the ASCII codes for the message are stored in a

block beginning at MSG and the program simply transfers thenm
inte the video RAM. This is done most effectively by making
use of the block transfer instruction, LDIR. This locads the
location whose address 1is in register pair DE with the
contents of the location whose address is in register pair
HL. Both DE and HL are then automatically incremented,
register pair BC is decremented, and the process repeated
until BC reaches zero.

Thus DE is loaded WLEH UBCA, the location corresponalng
to the top left-hand corner of the screen; HL is loaded with
OF9B, the 1location of the first byte of the message; BC is
loaded with 0030, the number of bytes in the message.

The initial contents of BC, DE, and HL are saved
temporarily on the stack so that if another program is making
use of any of these registers their contents will not be
changed by execution of the headings program.

The LDIR instruction is very useful for copying a block
of data from one area of memory to another. Its use provides
a more convenient method of achieving the objective of
Program 6.6.

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

10.7 Displaying the Complete Character Set

Program 10.9

Program Requirement: To display the complete character set
on the screen.

Flowchart:

-~

(Start _)

—-
Initialise screen location pointer.
Seat first code to O00OH
Initiatise charachters/line
to 10H

Form next charachter

¥
.

MAua
LU

three

ninfar
W FEE W

paces

{////é:E\:\\k_ o
oT HNne r NO Ly
Yeos _
(1]
Yeos

charaAc'Ltors Set screen location Ly
w No| Poinier io start of nexi iine
P Y
k NAS-SYS)

Flowchart for Program 10.9

A-11

MACHINE CODE PROGRAMMING

for the NASCOM 1 & 2

PROGRAM 10.9

LCOC'N CONTENTS LABEL OP CODE ARGUMENTS COMMENTS

0000 3E 0C LD A, 0CH GC is clear
screen

0po2 F7 -ROUT

0Do03 11 10 00 START: LD DE, 0010 Margin width.

0D06 21 0B 08 LD HL,080B Near top left
of display.

0Dpo9 3E 00 LD A,00 First character

: code,

0DOB 06 10 LINE: LD B,10 i6d chars/line.

ODoD 77 WRITE: LD (HL) ;& Write char.

CDOE 3C INC A Next char code.

ODOF 23 INC HL Move pointer..

0p10 23 INC HL ..Tight

6D11 23 INC HL «+3 spaces.

oplz 10 F9 DJINZ WRITE Jump to WRITE
if line not
ended.

0D14 FE 80 CP 80

ODle CA 1D (D JP Z,END Jump to NAS-SYS

- if all
.characters
done,

0D19 19 ADD HL,DE Skip over
margin.

oDla C3 0B 0D JP LINE Next line.

0D1D 3E 4A END: LD A,4A

OD1F 32 29 0C LD (0C29) ,a

0Dp22 3E 0B LD a,0BH

op24 32 23 0C LD (0C2a} , 2

op27 DF 5B .MRET

Execute the program and see the complete character set
displavyed.
Notes:

1. There are sixteen non-displayed memory locations in

the video RAM between the end of one line on the display and
the beginning o¢f the next. Thus, in order to move the
pointer from one line to the next l10H must be added, This

guantity 1is stored in register pair DE and added by the

instruction in location 0D11.

2. Register pair HL points to the current printing
position. It 1is initially loaded with 080BH, corresponding
to the printing position near the top left-hand corner of the
display.

3. Register A& holds the ASCII code of the character to
be displayed. It is 1initially lcaded with 00H and
incremented as far as 80H. At this point the complete
character set has been displayed and this is detected by the

A-12

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

instructions in locations 0Dl12 and 0D14.

4, Register B is loaded with the number of characters
per 1line to be displayed. This is sixteen (10H). Each
character ig followed by three gspaces so using up the full
48d character width of a line. Following the display of each
character and three spaces, the DIJNZ WRITE instruction at
location 0Dl2 decrements register B and, if it 1s <zero,
causes a jump to WRITE.

5. At END, the cursor 1is repositioned towards the
bottom of the screen so that the 'NA5-3Y¥5 1' title resulting
from .MRET does not overwrite the displayed character set.
The cursor position, ie. its address in video ram, is stored
in locations 0C29 and 0C2A. These locations are loaded with
4A and 0B respectively, so positioning the cursor at location
0B4A in vwvideo ram. This is at the start ¢of the next line

from the bottom of the screen,

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

11.0 INPUT AND OUTPUT

There are three methods of transferring data between the
cpu and the outside world. These are:

1. Programmed 1/0, in which the data transfer always
takes place at a specific part of the program.

2. Interrupt I/0, in which the external device
determines when the data transfer takes place. It does this
by stopping the current program and causing the cpu to
execute an ‘'interrupt service' routine in-which the data
transfer takes place.

3. DMA or Direct Memory Transfer, in which the external
device assumes control of the memory and data buses and data
transfers take place directly between the memory and the
device.

Both methods 1 and 2 are made simple by the use of a
peripheral input-output device, PIO, Method 3 is not so
often used and only the first two methods are described 1in
this chapter.

11.1 Peripheral Input-Output Device

The PIO is connected to the data bus o©f the
microcomputer and is controlled by signals from the cpu. Its
internal structure is shown below:

PORT A LOGIC
r_ > PORT A CONTROL

L

r—&% PORT A

=—— handshake

"~/ PORT ADATA Il —T71/0P0RTA

data
']
=
n -~ P
< [=
«
a
——» PORT B
I > PORT B CONTROL
——handshake
<> PORTBDATA K ——>I/0 PORTB
data

CONTROL SIGNALS

Internal Structure of the PIO

B-1

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

Each port may be an input or output (or both) depending
on the pattern of pbits in the control regiaster.
In the NASCOM 1, port A control register is port 6,
peort A data reglster is port 4,
port B control register is port 7,
port B data register is port 5.

11.2 Transferring Data between the CPU and the PIO Registers

Instructions to perform transfers between a port and
register A:

IN A, (n) where n 1is the port number (4,5,6,0r 7).
Data from pert n isg transfnrred to
register A.

QUT (n),A Data 1s transferred from register A to

Instructions to perform transfers between a port and any
cpu genefal purpose register:

IN reg,(C) Data from the port whose number is kept in
register C is transferred to the specified
Cpu register.

OUT (C),reqg Data is transferred from the specified cpu
register to the port whose number is kept
in register C.

11.3 Programmed Input and Qutput

Programmed I/0 is the simplest method of data transier.
It is illustrated in the following programs which use the
leds and switches attachment, the construction of which is
described in Appendix c .

for the NASCOM

Program 11.1

Program Requirement: To read the switches {port 5) into the
ieds (port 4j).

LOC'N CONTENTS LABEL OP CODE ARGUMENTS COMMENTS

0DOO 3E 07 LD A,07 Disable
interrupts

0po2 D3 07 ooT (7),A .on port 5

GD04 D3 06 cuT {(6),A .& port 4

opd6 - 3E OF LD A, UF Select o/p mode

0D08 D3 06 ourt (6),A for port 4

0DOA 3E 4F LD A, 4F Select i/p mode

0DOC D3 07 ouT (7) ,A for port 5

ODOE DR a5 LOGPE: I A, {3 Input 5

0p1o0 D3 04 ouT {4) ,A vutput 4

0pl2 C3 0E 0D JP LOGP

Execute the program and observe that the leds may be
switched on or off by the switches. Then single step through
it and note that the state of the switches 1s read into
register A by the 1IN &,{(5) instruction, and output to the
leds by the OUT (4),A instruction.

Instructions in locations QD00 to 0DoOD inclusive
initialise the PIO and are executed only once, while the last
three instructions of the program actually make the data

Framafare
e e GALL ot e b Lt @

In order to disable the interrupt facility the control
register of both ports must receive the code 07H. The first
three instructions effect this.

Since the leds are connected to data port 4, this port
must be an output port. (Data directions are defined fronm
the point of view o¢f the cpu.) The third and fourtn
instructions send c¢ode OFH to the «contrel register so
defining all eight bits of port 4 as ocutputs.

The switches are connected to data port 5 so this must
be an input port. The fifth and sixth instructions send code
4FH to the «corresponding control register so defining all
eight bits of port 5 inputs.

The PIO initialisation instructions for +this form of
data transfer (said to be without interrupts, without
handshaking) may be summarised thus:

At the beginning of the program 1load the port
control register (port 6 or 7) with:
U/ to disable interrupt facility on PIO,
OF for ocutput port OR 4F for input port.
This procedure can be seen at the beginning of the
programs which follow.

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

11.3.1 General Program Structure for Simple 1/0

Program l1l1.1 shows how to make a (rather inefficient!)
direct connection between the switches and the leds.
However, it illustrates the method which is used 1in many
microprocessor applications. The methed 1is shown in the

1 - L

L T T [¥ e [— - =
LOLLIOWlNng LiuwCllal we

(START |
N S

Disabie interrupts

b

Sef up Port
data directions

Read inputs

Decide what outputs
are required

WrHe to outputs

General Flowchart of Programs Employing Simple I/O

A further example of the general method is given in the
following program.

B-4

Lo TaValsF NI TR P

E CODE PROGRAMMING

IN
the NASCOM 1 & 2

Program 11.2
Program Reqguirement: To produce a pure binary up-count on
the leds if switch € is 1, and a down-

count if the switch is 0.

Flowchart:
(" Start -‘)

e -

!

- — — =

Read swliichas

- //l\m .
u.///,B“ 01\\“\1
‘\\\h -

e

Decrement count Increment count
in rogister D in register D

|

Output register D

Delay 1a

The program Keeps the current count in register D so, in
order to output from this register, the QUT (C),D instruction
is used, register C having been set to 04 at the beginning of
the program. The AND 0l instruction logically ANDs the state
of the switches {which have been read into register A) with
01 thereby setting all bits other than bit 0 to zero. The
result will therefore be 00 or 0l depending on the position
GE awitch 0 and this sets up the Zero flag for use by the JP

NZ,UP instruction.

B-5

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

PROGRAM 11,2
CONTENTS

LOC'N
0Doo

NN
Ve L

0D04
0DO06
0Do8

ODOA
ODOC

LRV

ODOE
OD10
D12

i ..
1leas,

3E

D3
D3
3E
D3
3E
D3
OE
DB
Eb

c2
15

e i)
o

06
FF
10
C9

Q7

v
06
OF
06
4F
07
04
05
01

1B

'—J
(]

Tl
[

0D

LABEL

LOOP:

UP:

CONT:

ONESEC:
DLY:

OP CODE
LD

ot
GUT
LD
ouT
LD
ogT
LD
IN
AND

lTp
DEC

JP
INC

ouT

[“Ne!

g

LD
. RDEL
DJNZ
RET

down if switch

ARGUMENTS
A,07

S I) B D
== = ~]w = -]
— D B et () e e
W= i~ W~ =~
-~ 1 b

]

o2
=
]

Execute the program and observe a binary
up 1f switcn O is 1,

11.3.2 Driving a Seven-Segment Display

compr
under

~

e
5es e

program
given below.

control.

ight leds, each of which may be turned on o

COMMENTS
Disable
interrupts.

.On port 5

& port 4

Select o/p mode
..port 4,
Select i/p mode
..port 5.

For 1/0.

Read 5

Mask off all
except bit 0.

Jump if Sw=1.
Here to count
down. '
Here to count
up.

Qutput register
D.

count on the

M~ Fay
U 15 U,

LR L ST ey I
17l APFCSTIG 1A <
r

A program to drive the display is
This program will be modified subsequently and
new programming techniques introduced.

HINE CODE PROGRAMMING
the

RITA LM 1 []
IR Fo Y LAPLV L S A« 4

Program 11.3A2
Program Requirement: To read a
keyboard a
=

seqment d4di

digit 0 to 9 from the
d display on the seven-

The Display: o

In order to display the character 'l', segments b and ¢
nust be illuminated, ie. bits 1 and 2 of the output port

must be set to 1, all others being 0. Thus, the output
guantity must be 00000110 or 06H. The table below gives the

aTmia o == T LFLILAANAS 2R AT

required cutputs for all the ten digits.

Hex

2

—“ORHFOHREOOQD
=1

D
SRR RO RMOO

— O O OO O o MmO

Digit

d
00
06
5B
4P
66
6D
7D
07
1F
67

SO0COMO GO
SO RO OO
- Ot e = DO OO M
~HOOHKHRKFROD
O RO oD

L T

WE-Ihneswpope~o

o
-
[}
o
(="
-
-
[

The program makes use of a look-up table; the output
codes for the digits 0 to 9 are held, in eorder, in the table
which starts in location TABLE. wWhen the ASCII code for a
digit is available it is converted to the binary number equal
to the digit. Thus, if '5' is entered from the Keyboard, the
ASCII code for '5', 35H, is converted to numeric 5; this is
done simply by subtracting 30H from the ASCII code. The
number 5 is then added to TABLE so forming the address of the
location holding the appropriate output code. This code is

oo itk e
iiTll WL UL

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

Flowchart:

TN

l STIRT |

Disable interrupts
Set port 4 to output

v

Load table base address
into HL

|
€

Read keyboard

'

Convert ASCII to binary

:

Add binary value
to base address

v

ctxaci data from
tableddisplay

y

Flowchart for Program 11.3A

B-8

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

PROGR&AM 11.3a

LOC'N CONTENTS LABEL QP CODE ARCUMENTS COMMENMTS

0D00 3E 07 LD 4,07H Disable
interrupt..

D02z D3 06 oUT (6} ,A .on port 4

0D04 3E OF LD A,0FH Port 4

0D06 D3 06 ouT {6).a .i8 o/p.

0Do08 21 00 OE LOOP: LD HL, TABLE Table base

0DOB DF 7B .BLINK Get char.

GDoD D6 30 5UB 30H

0DOF 85 ADD A,L Form o/p
address..

0D140 6F LD L,A ..1in HL,

0D1l 7E LD A, (HL) Get output
e To =

0Dp12 D3 04 OuT (4),A

0D14 Cc3 08 0D JP LGOP Again,

0EQO 3F 06 SB 0,1,2

0EG3 iF b6 6D 3,4,5

OE06 7D 07 7F 6,7,8

0E09 67 g

[R — P [R, .

Execute the program and observe that the digits 0 to 9
may be written to the seven-segment display. Observe too
that other keyed characters produce outputs. If, for
example, character 'A' is Kkeyed, its ASCII code of 41lH is
converted tce 1l1H 8o that the output byte will be whatever

happeneg to be in locaticon QEll., Goeod practice demands that
the computer inputs be checked for wvalidity and, if not
valid, a warning or error message be given to the user. The

next section shows how an illegal character may be made to
produce the character 'E' on the display.

11.3.2.1 Modification to detect an illegal character.

The possible ASCII codes for the keyboard lie within the
range 00H to 7FH, but only codes 30H to 39H are legal <codes,
representing the digits 0 to 9. By subtracting 30H the
possible codes lie within the range -30H to 4FH, legal codes

i 11 1 Flim d e tazvemm e
being 00H o 095, The legal «c¢odes all hawe their upper

nibble equal to 0 and this forms the basis of the first test.
Only codes 00H to OFH pass this test. The remaining codes
then simply have to be checked to see if they are greater
than 9 or not. These tests are diagrammed below.

R e 0 O e i ol

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

Possible ASCII codes: 00...2F}30...39|3A.,.3F| 40...7F

Subtract 30H: -30...-1{00...09!/0A...0F|10...4F
Upper nibble =07 NO YES YES NO
Not greater than 97 YES - NO

~g
cr
o
0
m

PR 1 1=
v k.U - }_JCADD [
Q

Flowcnart:

' START)
L 4

Initialise Port 4

|

¥

Set table base address in HL

‘

Read keyboard

'

Convert ASCII to binary

Qpper nibble ™ N0
Is

number YES

i 797
NO
4

Add number to Display E as
base address in HL error signal

v
Exact data from
table,and display

T
¥ 4

Flowchart for Program 11.3B

B-10

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

PROGRAM 11.3B

LOC'N CONTENTS LAREL OP CODE ARGUMENTS COMMENTS

0D00 3E 07 LD " A,07H Disable ints
ONy.as

D02 D3 06 : ouT (6} A .port 4.

0D04 3E OF LD A,0FH O/p mode..

0D06 D3 06 QuT {6),;A .port 4.

0Do8 DF 7B LOOP: +BLINK Read keyboard.

0DOA 21 00 OE LD BL,TABLE Base address.

0DeD o6 30 SUB 30u To binary

0DOF 47 LD B,A Save it

0D10 E6 FO AND FO Is upper nibble
=0?

0D12 C2 23 (0D Jp NZ ,ERROR If yes, Jjump.

onls 78 LD A B Replace it

ODle FE OA CP 0AH >97?

opls8 F2 24 0D JP P,ERROR Yes, jump.

ODiB 85 ADD A,L Add it to

0D1C 6F LD L,A . «base,

0D1D 7E LD A, (HL) Get o/p..

ODIE D3 04 ouT (4) ,A .& display

0D20 C3 08 0D JP LOOP Again

0D23 3E 75 ERROR: LD A,7SH Code for E

0DZ5 D3 04 ouT (4} ,A .& display

on27 C3 08 0D JP LOGP Again

11 1T 27 27 AAATvwAa =
s s nuu&.ll" -

Error messages to the user of a computer program often
need to be eye-catching. In the case of the segment display,
the 'E' may be made to flash on and off. The program segment
helow replaces the ERROR routine in Program 11.3B, otherwise
the program is unchanged. The modified routine blanks the
display, waits a quarter-second, displays 'E', waits for a
quar ter-second, and repeats for a total of eight times before
returning to read the keyboard again.

L | | - ook -soml]

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

PROGRAM 11.3C

Program Requirement: Asg for Program 11.3B but with a
flashing 'E' to indicate an illegal
entry.

LOC'N CONTENTS LABEL OP CODE ARGUMENTS COMMENTS
0Do0 as for
- Program 11i.3B

D23 0E 08 ERROR: LD C,08H Loop counter.
0D25 AF RPEAT: XOR A Blank..
0D26 D3 04 ouT (4),A ..display.
6D28 06 20 LD B, 20H Delay..
GDZA Fr DLY: «ROEL -

QD2ZB 10 FD DINZ DLY .+ 100p.,
002D 3E 79 LD A,79H Load 'E'
OD2F D3 04 OuT {4) ,A & display.
0D31 66 20 LD B,20H Delay

0p33 FF DLYl: .RDEL

0D34 10 FD DJINZ DLY1

0D36 0D DEC C

OCD37 CZz 25 0D JP NZ , RPEAT

OD3A ¢3 08 0D JP LOOP

11.3.2.3 An Alternative Solution -Table Searching

The previous programs to drive the seven-segment display
make use of a single look-up table. This is convenient since
the character code can be converted to a number in the range
0 to 9 and added to the table base address. Since the output
table 1is arranged in order the correct output code is easily
found. 1If this were not the case, two tables may be used; an
input table consisting of all the valid codes (in any order)
and an output table consisting of the corresesponding output
codes in the same order as the input table. The code from
the keyboard may then be compared in succesesion with 211 the
entries in the input table and, when a match 1s found, the
corresponding entry in the output table provides the
appropriate code. ''he CPLR instruction dgreatly facilitates
such table searches and its use is shown in the following
program.

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

y Al T Al el P] o
wLlite L AGWUITW LG L Uly lLo L
ven-segment display, showing 'E'

for an illegal entry.

Get character code
from kayboard

|
Y

Compare character code
with entries in INTAB
untll «a match is found

!

Add displacement

e "ThRIT ABR
iV LNIIAD

T
L

Output code from OUTAB

y

INTAB 30
36

34« This input code

OUTAB 3F
7D
66 4-this output code

8

Flowchart for Program 11.3D

B-13

MACHINE CODE PROGRAMMING

for the NASCOM 1 & 2

LOC'N
0D0O
0D02
0D04

NnNng

LA

0pos
0DOA
0DOD
0D10
oniz
0D15
0Dl6
0D17
0D19

. -
- .

a1 e we

TR Y}
LR TR T)

0EQO
0EQ3
OEO0G
0EQ9
QEOC
QEQOF
OE1l
OEl4
UE17
UE1lA
JE1D
UE20

any

codes,
The
search
pecinted to by the register
register
contents of register pair BC (Byte Count)
If the decremented value of register pair BC is not zero
and the content of the memory location does not match that of
register A, then the

content

l.

CONTENRTS

3B
D3
3E
B3
DF
21
01
ED
11
19
1E
D3
C3

30
33
37
39
43
46
3F
4F
07
67
58
71

07
06
OF
0&
7B
00
11
B1
10

36
35
38
44
42
00
7D
6D
7F
5E
7C
79

order,

0E
00

a0

0D

34
31
32
41
45

66
06
5B
77
7B

while

through

bUllLJ.llut:‘:l
match is found.

less than the length of

points to the required output code. Should a

found, the CPIR will c¢cease when register

zero, and the cecde, 79H, for the character
output.

of

FRepp - |
ullL i1k

LABEL

READ:

INTAB:

OUTAB:

QouUTAB

PR T
eloner

When a match is found,

in nnnn

A.

OP CODE
LD

ouT

LD

oyrT

+ BLINK
LD

LD
CPIR
LD

ADD

LD

CuUT

JEP

contains
in the same order as INTAB.
ingtructions

INTAB.

pair

HL 1is

instruction

Ley J.b ter

0DOD,
The content of the memory loc
compared
incremented by 1,

HL is

ARGUMENTS

A,07H

(6),A
A,0FH

f&Y A
VW rae

HL, INTAB
BC,G011H

DE,0010H
HL, DE

A, (HL)
{4),A
READ

The INTAB table contains all the valid input
the corresponding output

and

is repeated

a displacement (in this case
INTAB) is added to HL so that it

onlo

is

COMMENTS
Disable
interrupt.
Set port 4

- R R TN
O VUL pPU L

Compare..
INTAB data
til match.

Add ﬂ1cn'mnn+

to HL.
Get o/p..
& display

(pRY- T N
DO oo
- - - - -
(ko lie - O T -8

=
-
»

Corresp
output
codes,

codes,

narfoarm

e sl

match not

nair 'I:l(" rn:nhar_‘
r'uJ.L Tl W kL e

'E' will

ation
with the
and the
decremented by

Repetition
nes Zero Or a

one

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

11.3.3 Position Encoder

The circuit shown in Appendix ¢ allows the positions of
two knobs to be read into the NASCOM. With the knob turned
to one extremity the program will return a value of zero ot
near zero and, at the other extremity, a wvalue of FF (or
near) is returned.

Program 11.4
Program Reguirement: Teo read the position of +the knob

controlling monostable 0 and to display
on the screen a value indicating its

position.
The knob position is read by the subroutine POTPOSO.
This outputs a trigger pulse to monostable 0 and then reads

the state of the monostable output pulse. All the time that
this pulse is high, register C is incremented from 00. At
the end of the monostable pulse the subroutine returns
main program with the reguired value in register C.

. Clear register C.
. Trigger the monostable.

.
T Y [P N N

I)
=\j.LDL.CL Lo
Input the state of the monostable.
If the input is 1, go to step 3,
else return to main program.

ie.

U ok LD DO
-
Ll
o
L4
"
a
a
bt
a3
r

=
=]

1

ince only one bit of output and one bit of input are
required, it would be extravagant to use one PIO port for
output and another for input as in previous programs.
Instead, a single port is used in *mode 3%* This allows each
of the eight bits of the port to be programmed as an input or
output independent of the other pins. Mode 3 is selected by
sending code CFH to the port centrol register, followed by
another byte containing ls where the corresponding bit is to
be an input, and 0s where the port bit is to an output,
Thus, in the initialisation sequence, code FOH is sent to the
control register.

-

11110000=F0QH
This programs bits 0 to 3 as outputs, and bits 4 to 7 as
inputs. {The subroutine outputs the trigger pulse on bit 0
and reads the monostable on bit 7. Although only two bits
are required, all eight bits must have a defined data
direction.)

* When all the port pins are ou
programs, the port is in “"mode §". hen
the port is in "mode 1".

MACHBINE CODE PROGRAMMING
for the NASCOM 1 & 2

PROGRAM 11.4

LOC'N CONTENTS LABEL OP CODE ARGUMENTS COMMENTS

0DOO 3E 07 LD A,U07H Disable

0D02 _, D3 06 ouT (6},A interrupts

obu4 3 CF LD &,CFH Mode 3

CD06 D3 06 OUT (8),A .0n port 4

6D08 3E FO LD A,FOH Upper nibble 1is

input.

GDOA D3 06 ouT (6),A Lower nibble 1is
: output.

e CD 00 OE INPUT: CALL. POTPOSO

ODQF 79 LD A,C

0D10 DF 68 .BZHEX

oDlz DF 6A +CRLEF

0pl4 06 RY LD B, BYH One ..

cp1é6 FF DEL: . RDEL . «.Second

0Dl7 10 FD DINS DEL . .delay.

UD1Y C3 0C Uub Jp INPUY Again

T ;Subroutine to read pot 0.

11 ;Return value is in register C.

000 35 01 POTPOSU: LD A,0lb Froduce

aEdz D3 V4 QUT (4) ,A negative

DEC« AR X0OR A trigger

GEU D3 04 auT (4),A pulse

GRGT 3C INC A on

G048 D3 G4 ogT (4),4 bit 0,

CEGA Uk du LD C,00H

GrUC D 04 LOGP In A, (4)

OEUR AT ' AND A

CEOF - FO RET P Pulse done

DELD oc TnC C

Oell 0o NOP

QEL1Z GO NUP

OE13 C3 0C UE J P LOOP

The 1initialisation seguence, from the start down to
INPUT, sets port 4 to mode 3 with bits ¢ to 3 as outputs,
bits 4 to 7 oas iy NpULs. Un return from subroutine PO'IPOS'\},
register C contains the required value which 1is displayed
and, after one second delay, the program repeats,

Subroutine POTPOUSU wvegins by outputting the sequence
1,0,1 (ie. a negative trigger pulse) on bit ¢ to monostable
., Register C is then cleared and LOOP increments register C
until the monostable output becomes 0. Since the input from
the monstable is in bit 7, the end of the pulse 1is detected
by the input byte being positive, so that return to the main
program may be by the RET P (RETurn if Positive} instruction.
Note that since the IN A,{4) istruction does not affect the
state of the flags, the AND A instruction is necessary. This

does not alter the contents of register A but it does alter

B-1l6

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

the flags.

The NMOP (Ngo QPeration) i r
to increase the time taken to increment register C. More or
less NOPs may be inserted so that, when the knob is turned to
give maximum pulse length, the maximum count in register C is

not more than FFH.

Qo
t

Program 11.4 could be modified to read monostable 1
instead but it is more convenient to have a single subroutine
which reads both monostables. BSuch a routine is incorporated
into Program 11.5 On return from this subroutine, registers D
and E contain the values from monostables 0 and 1
respectively. The main program simply displays the two

readings side by side on the screen.

DOVNDN e ae e - : .
POTRD preoduces a negative trigger

monostables and then increments registers D and E from zero
until the respective monostable pulse ends. This is detected
by using the bit test instructions, BIT b,R, which set the
Zero flag if the bit tested is 0. To detect when both
mongtahles have timed out, the input byte is ANDed with COH
and a return is made if the result is zero.

Hlse to hath

T il

Program 11.5
Program Requirement: To show the use of a subroutine which
' reads both monostable 0 and 1,

LOC'N CONTENTS LABEL OP CODE ARGUMENTS COMMENTS

0DGO 3E 07 LD A,07H Disable

oD02 D3 06 ouT (6} ,A ints

0Do4 3E CF LD A,CFH & mode 3

0D06 D3 06 ouT (6),A .0n port 4

0D08 3E FO LD A,FOH Upper nibble is
input.

0DOA D3 06 QuT (6),A Lower nibble is
output.

aDocC CD 00 OE INPUT: CALL POTRD

ODOF 7A LD aA,D

0D1o0 DF 68 .B2HEX Display

gpl2 DF 69 . 5PACE both

0Dl4 7B LD A,E values on

0D15 DF 68 .B2HEX one line.

0D17 DF 6A . CRLF

0Dp19 06 BY LD B,BSH Delay

0D1B FF DEL: .RDEL one

oD1C 10 FD DJINZ DEL second.

gD1E c3 0C oD JP INPOT Again

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

:Read both monostables.

;Return monostable 0 in register D,

;and moncstable 1 in register E.

JERO0 le 00U POTRD: LD D, 00H Clear D
OEOZ 53 LD E,D and E.
OE03 3E 03 LD A,034 Output
OEDS D3 04 GuT (4),A negative
0EO7 AF XOR A " trigger
OE08 D3 04 - CUT {(4),A pulse
OEOA 3E 03 LD A,03H to both
0EOC D3 04 OUT (4),a m/s.
0EQE DB 04 LOUP: IN A, (4) Read.
0E10 cs 7r BIT 7,4 Pulse 0
DE12 CA 16 UB - Jp 7 , DONE done?
GE1S 14 : INC D NO.

0El6 cB 77 DDONE : BIT 6,A Pulse 1
0E18 CA 1¢ Um JP Z ; EDONE done?
UElRB 1C INC e No.

OE1C Ee CO EDONE: AND co Both done?
UE1l:n C8 RET Z Yes.
UELF C3 OE OE JP LOOP No.

Ubvious applications of the dual position converter
include using the two knobs to control the 'bats' in a game
of ‘'tele-tennis' and to generate XY coordinates for graphics

ol sure
O LAYD

£
bt

11.4 Digital-to—-Analogue Converter

The circuit described in Appendix ¢ can be used both to
output an analogue voltage from the NASCOM 1 and to input an
analogue vecltage. This section describes 1its use as a
digital-to~analogue counverter, DAC, le. a device to output
an analogue voltage.

Program 11.6

Program Reguirement: To input a digit 0 to 8 inclusive and
Ak = L T I I e Tak o Famamal o o
. L R A L [=§ L e HaWREWL Lvila ol i il

input.

The analogue output voltage is in the range 0 to 4V
approximately, corresponding to a binary input of 00UH to FFH.

In order to use the full range of the analogue voltage
output, the input digit (0 to 8) is multiplied by 324 to
obtain the required binary output. This is simply achieved
by shifting the number left {five times. This, however,
results in an input of 8 attempting to produce a binary
output of 256d which is overflow., This is detected and an
output of 255d (=FFH) generated instead.

The analocgue output veltage is most easily observed with

B-18

MACHINE CODE PROGRAMMING

far thao MHC(‘I"\M l & 2

W A e AE N LWL A R

a voltmeter. However, the circuit in Appendix c allows the
brightness of a torch-bulb or the no-lvad speed of a model-
makers electric motor to be controlled. (It should be noted
that there are purely digital methods for controlling such
devices. These essentially switch the power to the device on
and off rapidly, using however the same circuit as given
here.)

PROGRAM 11.6
LOC'N CONTENTS LABEL OP CODE ARGUMENTS COMMENTS

0D00 3E 07 LD A,078 Disable..
0po2 D3 07 ouT {(7).A ..ints
0D04 3E OF LD A,O0FH % mode 0
0D0s& D3 07 ouT (7) ,A on port 5.
0D08 DF 7B 1P: .BLINK

QnoA D6 30 SUB 304

anac CR 27 SLA A

ODOE cB 27 SLA A

0D10 CR 27 SLA A

0D12 CB 27 SLA A

0D14 CB 27 SLA A

0Dlo p2 1B 0D JP NC,OP

0D1l% 3E FF LD A,FFH

0D1B D3 05 QP: ouT {5) ,A

0D1D C3 08 0D Jp Ip

11.5 Analogue-to-Digital Converter

This section describes how the circuit described in
Appendix c be used to input an analogue voltage, such as
may be obtained from the 10k potentiometer.

There are two or three ways of using the circuit as an
ADC. However, they all depend on generating an output from
the port to the DAC so that the corresponding analogue
voltage from it is just a little larger than the voltage at
the analogue voltage input. The comparator output will then
be logical 1 and this signifies that the conversion is
complete. The most straightforward method is to output a
binary count up from zero until the comparator output goes to
1. The binary number at that point 1s proportional to the
input voltage. This however is relatively slow; a much
quicker method is that of "successive approximation”.

Suppose, for simplicity, that only a 3 bit conversion is
required, and that binary output 100 produces 2v from the
DAC. Output 010 would then produce 1V, and 001 would produce
0.5V. Further, assume that the analogue input is 2.6V.

The first approximation would be 100 producing 2V from
the DAC and hence a comparator output of logical 0 (="too
small"). Since the approximation is too small, the most
significant bit of the reguired result is 1, The next try
would therefore be 110, producing 3V (ie.2V + 1V) from the
DAC and a comparator output’ of logical 1 (="too large").

B-19

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

This second bit should therefore be 0 and the approximation-
so—-far is 100. The final try would be 101 preoducing 2.5V
from the DAC and logical 0 from the comparator. The final
approximation would therefore be 101.

Note that for a 3 bit conversion only 3 succssive
approximations are required. For an 8 bit converter, 8 steps
are required. The conversion routine is written as a
subroutine, returning the required value in register C. The
initialisation of the PIO is at the beginning of the main
routine.

Flowchart:

{ asnsa |

Clear result-so-far

¥

Loop counter=8

¥
First try = 80H

[: ‘
try too big? ~>NO
| I

R try with resuft-so-far
YES OR try g

. |

-

Next try=
i result-so-far OR next bit

| N 3

Qutput next try

—7
NO F0Qp

Flowchart for Program 11.7

B-20

MACHINE CODE PROGRAMMING
Lo en ke la
LuVL [

»
the NASCOM 1 & 2

PROGRAM 11.7

LOC'N CONTENTS LABEL OP CUDE ARGUMENTS COMMENTS

0D0o0 3E 4F LD A,4FH Mode 1

nonn2 D3 06 ouT (6),A on port 4.

0D04 3E OF LD A,0QFHd Mode 0

0paQs6 D3 07 cuT (7),A on port 5.

0pos Cb 00 OE BEGIN: CALL AZ2D5A

0DOB 79 : LD A,C Display..

onpac DF 68 .B2Z2HEX ..result.

ODOE DF 6A .CRLF

0Dlo 06 BY LD B,B9H One..

UD12 Fr DEL: .RDEL . .gecond

0D13 10 FD DJNZ DEL ..delay.

0pl5 €3 08 OD JP BEGIN kgain.

I ;

NS ;Analogue-to—-digital subroutine.

HER :Resnlt in register C.

MR ¥

0E0O 0E 00 AZ2DSA: LD C,00RH Clear result
regiscei.

0EQO2 16 08 LD D,08H Loop count

0OEQ4 06 80 LD B,80H First try.

OEO6 78 LD A,B Qutput..

0EQ7 D3 05 ouT (5),A .18t try.

QE0S DB 04 : COMPIN: IN A, 14} Too., .

QEOB A7 AND A ..big?

0EQC F2 12 OE JP P,NEXT Yes, jump.

QEQF 78 LD A,B No.

0E10 Bl OR C

g1l 4 LD C,A Result-so-far.

0El12 CB 08 NEXT: RRC B Next bit.

0El4 78 LD A,B OR it..

QE1S Bl UR C with t~s-f

0Elé D3 05 ouT {(5),A Next try.

OE18 15 DEC D Loop done?

0EL9 c2 09 0E JP NZ%Z,COMPIN No, jump.

0E1C c9 RET Yes,return

11.6 Waiting for a Device Flag.

In the programs so far, the devices (ie. the 1leds,
switches, and convertersg) are always ready to take part in a
data transfer. This may not always be the case; for example,
a paper tape punch takes a relatively long time to punch one
byte and will not be ready to receive a further byte until it
has completed the punching of the previous one. Such 'slow'
devices have to generate a signal to indicate that they are
ready for a data transfer. In the following program switches
0,1,& 2 are used to input data to the program but the
transfer of data will only take place when the ‘device flag’
is active. The device flag in this program actually comes
from Switch 3 which is driven by hand: wusually, the device

B-21

MACHINE CODE PROGRAMMING

£ -k NAS
for the NASCOM 1 & 2

itself will activate the flag automatically. Thus, a paper-

tape reader will automatically activate its flag to signal

that it has moved the paper-tape onto the next character and

is ready to have it read.

Program 11.8

Program Requirement: To read Switches 0,1,& 2 when the
device flag (=Switch 3) is active. The
data 1input of a number 0 to 7 is then
displayed on the screen,

then bit 3 (from Switch 3 sted. If the b1t is 0,
indicating that the device is not ready, the program reads
the port again. This short loop will be executed very many
times until Switch 3 goes to 1. (Flick the switch only
momentarily to 1, otherwise several data transfers will take
place.)

When the data is read it is converted to its ASCII code
tirst by setting all bits other than the data bits to 0 and
then ORing the result with 30H. The resulting ASCII code is
displayed using subroutine CRT, and the sequence repeated.

PROGRAM 11.8

LOC'N CONTENTS LABEL OP CODE ARGUMENTS COMMENTS
0D0O0 3E 07 LD A,07H Disable..
0po2 D3 07 OuT (7) ,A ..int
UD04 3E 4F LD A, 4FH & mode 1..
0DO06 D3 07 cuT (7} /& on port 5.
QDo DR 05 SWRDY: IN A, (%) Input.
0D0A CB 5F BIT 3,2 Flag set?
0DOC CA 08 0D Jp Z , SWRDY No, jump.
ODOF EG U7 AND 07H Yes.
0D11l Fé 30 OR 30H Convert.
onl3 F7 «ROUT Display.
0D14 DF 6A . CRLF
ODlo 06 30 LD B,30H Quarter..
UDisg FF DEL: RDEL . .second., .
0Dlo 10 FD DJINZ DEL ..delay.
0D1B €3 08 0D JP SWRDY Again,
The came principle applies when outputting data to a

slow device, eg. a paper-tape punch. The punch must signal
that it has finished punching the previous data and is ready
to receive the next byte to be punched. This is illustrated
in the following program, in which the 'punch' is the leds
and the 'punch flag' is Switch 0.

MACHINE COD
NAS

for the NA!

PROGRAMMING
oM 1 & 2

Program 11.9

Program Requirement: To display a four bit binary count on
the screen and transfer the data to the
leds when the leds flag is set.

Since only four bits of output {the data) and one bit of
input (the 1leds flag) are reguired, it is possible to use
just one I/0 port in mode 3. Although this requires only a
simple reconnection of Switch 0 to one of the unused bits of
port 4, the following program requires no rewiring since it
uses two ports, one for input and the other for ocutput. Many
data transfers are of eight bits anyway and go demand the
of two ports.

Switch 0 1is wused as the leds flag. This provides an
alternative method of testing the flag to the BIT test
instructicn used in the previous program. Here the switch
data is rotated right instead so that bit 0 enters the Carry
flag. As before, flag switch 0 must be flicked only
momentarily to 1 to avoid multiple transfers.

1TC O
L Y et

PROGRAM 11.9
LOC'N CONTENTS LABEL OP CODE ARGUMENTS COMMENTS

0D0o 3E 07 LD A,07H Disable..
opo2 D3 06 ouT (6),A ..both,,
0po4 D3 07 OUT {7} .,A ..ints.
0D06 3E OF LD A,OFH ' Mode (..
oDo0s8 D3 06 ouT (6),A .0on port 4
OD0A 3E 4F LD A, 4FH Mode 1..
0DOC D3 07 ouT (7).,A .0n port 5
ODOE OE Q0 LD C.00H Clear C
0D10 79 DISPLAY:LD a,C Display..
0Dl1l E6 OF AND OFH ..binary
JD13 DF 68 .BZHEX .. COount.
0D1l5 DF 6A . CRLF in reg C.
0D17 DB 05 LEDSRDY : IN A, (5) Input
0D19 1F RRA Flag set?
OD1IA D2 17 0D JP NC,LEDSRDY No, jump.
gcle 79 Lo A,C Yes,..
QD1E D3 04 ouT {4) ,2 cutput.
QD20 06 30 LD B, 30H Quarter..
0D22 FF DEL: .RDEL . .Second
0op23 10 FD DJNZ DEL ..delay.
QD25 oc INC C

0D26 C3 10 oD JP DISPLAY Again,

The data transfer method used in Programs 11.8 and 11.9
use the cpu to constantly query the external device "Are you
ready for another data transfer?". It does this by reading
the device flag over and over again until it indicates that
hivn~s Amiriass T s mAzr M o demmlram s 2 o~ 1 AA Vommn T aemme 1 . Ers
LT WOV LW e i LT QUY . Lil LD L‘C:bllllj.lﬂuﬁ 4 2 Lo O e LJUJ.J.J.II.\d F 4 L
is the simplest method of communicating with a slow device
and 1is adequate for most microprocessor applications.

B-23

e e Ta Vel r NI L L Ty

NE CODE PROGRAMMING
e

NASCOM 1 & 2

Hh 3

ACH
or

However, the cpu does spend much of its time waiting for the
ready signal and this represents a waste of processing
”5pab.l1ty An alternative method, that of interrupt driven
1/0, is described below and it will be seen that the cpu can
be allowed to continue with other processing tasks (like
performing calculations on the data previously input) while

the external device 1s not yet ready.

11.7 Interrupt Driven I/0

The two following programs show how the c¢cpu may be
programmed to carry out one task continually until

interrupted when a second task, that of imput or output, is
performed. On completion of the second task, the cpu

continues from where it left off the first task. The first
task 1s carried out by the main program and the second is

carried out by the interrupt service routine. The scheme is
illustrated belaw.

’ MAIN Interrupt request . INTERRUPT
granted.

! ~ SERVICE

! PROGRAM‘ End of interrupt :

' service, ROUTINE

General Scheme for a Single Interrupt

The interrupt request is generated manually by pressing
t

ton on the pulser circuit described in Appendi

the bu

Program 11,10

Frogram Requirement: To display a binary count on the
screen. When an interrupt request is
made the value of the switches will be
displavyed.

Th W C ected Lo PIO port 5. This is port
B of the PIO and, in orde to make an interrupt request to
this portg, thg_ggtput of the pulser must be connected to the
pin labelled BSTB on the PIO.

ws]
I

[\

.

MACHINE CODE PROGRAMMING
for the NASCCM 1 & 2

PROGRAM 11.10
LOC'N CONTENTS LABEL OP CODE ARGUMENTS COMMENTS

0Do0 ED 5E INIT: IM 2 Cpu int
0D02 FB EI enable.
0Do3 3E QE LD 4,0EH Interrupt
0Do5 ED 47 LD I,A vector
0DO7 3E 00 LD A,QUH is
0D0S D3 07 ouT (7).,A UEVD.
0DOB 3E 4F LD A,4FH Port 5
0non D3 a7 ouT (7) ;A is i/p.
0DOF 3E 87 LD A,87H Enable
0D11l D3 07 ouT (7) ,A PIO int.
0D13 oC MAIN: INC c Uisplay
0D14 79 LD A,C binary
0D15 DF 68 .BZ2HEX count.
0D17 DF 6A .CRLF on screen.
0D19 06 B9 ' LD B,B9H One
¢ple P DEL: «RDEL second
0Dp1C 10 FD DJINZ DEL delay.
0p22 C3 13 0D JP MAIN Again.
rree ;
000 00 OF ;Interrupt service routine
Tz ;begins at location OF0Q.
tres ;

;Interrupt service routine.

;Input switches to screen.
OF00 EF SERVIN: .PRS Display
0F01 49 6E 74 Int message.
0F04 65 72 72 err
0F07 75 70 74 upt
orea 21 00 ! 00
QFQC DB 05 IN a,(5) Input
OFOQE E6 OF AND OFH Convert
0F10 F& 30 OR 30H
OFl2 F7 . ROUT Display
4] DF &4 .CRLF
0F15 FB EI Enable ints
OFlé ED 4D RETI

Execute the program and observe that a binary count is
displaved on the screen, incrementing at one second
intervals, This is the program MAIN. Whenever the interrupt
button is pressed, observe that the message 'Interrupt! x'
appears, where x ucycuun on the switch settings. TAKE CARE
that the program 1is entered corectly before attempting to
execute it because an error may result in the interrupt being
granted but not serviced corectly. (One symptom of this is

that the interrupt will be serviced once only. This may

rr\nen1h'|v be corroctad hu axacuting tha followinga coda fFrom

=1 ne correc AR e e A lay A e A RS Al =

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

OF80 Ch 8B QF
OF83 3E 03
QF85 D3 06
or87 D3 07
0F8s DF 5B
O0F8B ED 4D

If this fails power-off and re-enter the program correctly.)

To use the interrupt faclity of the PIO, the Z80 must
itgelf be placed in its own interrupt mode 2, and its
interrupt faclity enabled. This 1is achleved by the
instructions IM 2 and EI, It is then necesary to inform the
cpu where, in memory, it can find the address of the start of
the interrupt routine. In this example, this address is held
in memory locations 0E00 and OEO0l: the required 'wvector' is
0EQC. The upper byte, (0E, is loaded into register I o¢f the
cpu and the lower byte, 00, is sent to the PIO control port.
{The wvector must be an even number.) The remaining
instructions of the INITialisation part of the program set
port 5 to be an input port and enable the interrupt facility
on the port itself.

In response to an interrupt request, the PIO sends the
low hv+a of the vector, 00. back to the cpu which usea it

LR PLY, R B T]

together with the contents of register I, 0E, to form the
required vector, OEQO. From that memory Ilocation (and the
one 1mmediately following) the c¢pu obtains the starting
address of the service routine, O0F0Q0.

The service routine, SERVIN, simply displays a short
message, inputs the value of the switches, converts it to

ASCII code, and displays the corresponding character. Since
the ngutlﬁg af an interrupt quueSL auLOmauLuaL;y disables

the interrupt facility of the cpu, it 1is necessary to re-
enable it with EI before returning to the main program with
RETI.

Program 11.11
Program Requirement: To display a binary count on the
screen. when an interrupt request is
made, the current count is displayed on
the screen and the lower nibble sent to
the leds.
The output to the leds is from port 4 (port A) of the
PIO so0 the interrupt reguest will be made from this port.
The pulser output must therefore be connected to the pin
labelled ASTB on the PIO.
This program is very similar to the previous one; some

irkAaer Aim FhAa THTT miavd AfF +hos mroacoram havs haon rhanosoad =
u: T S bt b L& LEW W = LW A A tdl.,ll.\.- L LT) r’hv‘jl-ulll Adbd W Ym B e e AR Taed Ak ek A BU“ -

refer to port 4 instead of port 5 and a few instructions in
the service routine have been changed to cause ocutput to PIO

port 4.
Again, observe the binary count on the screen and,

B-26

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

following an interrupt request from the pulser, the low byte
of the current count on the leds. Note that, while the
output to the leds is almost always the same as that
displayed on the screen, it 1is possible for it to be one
count ahead. This arises if the interrupt request is granted
at the end of the INC C instruction at location MAIN.

PROGRAM 11.11
LOC'N CONTENTS LABEL OP CODE ARGUMENTS COMMENTS

0D0o ED 5E INIT: IM 2 Mode 2
0Dg2 FB EX cpu int.
0503 aE 0OE LD A,LOEH Vector
QD05 ED 47 LD I,A is

0D07 3E 00 LD A,00H QECO.
0D09 D3 06 QUT (6),A

0poB 3E QF LD A ,CFd Port 4
OPOD D3 06 ouT (6),A is o/p.
0DOF 3E 87 LD A,B87H Enable
0D1l1l D3 06 ouT (6),A PIO int.
0D13 aC MAIN: INC C Display
0Dl4 79 LD A,C up

0D15 DF 68 .BZHEX count on
0Dl17 DF 6A .CRLF screen.,
0D19 06 BY : LD B,BY%H One

0D1iB FF PEL: +.RDEL csecond
oD1lC 10 FD DINZ DEL ' delay.
ODlE €¢3 13 0D JP MAIN Again.
0EQO 00 OF ;Interrupt service routine
HER thegins at location OF0G.
Tt :Interrupt service routine,
122 :0utput register T to iedas.
Tt 3

OF00 EF SERVOUT: .PRS Display
0F01 49 6E 74 Int message.
0F04 65 72 72 err

OFG7 75 70 74 upt

QF0A 20 00 (sp) 00

OFOC 79 LD a,C

OF0D D3 04 CuT {4) ,A O/p reg €.
OFOQF DF 68 .B2HEX Display reg C,
QFll DF 6A .CRLF

QFl3 - FB EI

O0Fl4 ED 4D RETI

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

11.7.1 Bit Mode Interrupt

The PIO mode 3 allows the data direction of each bit of
the port to be programmed independently of the others; this
was described in Chapter 11.3.3. When the interrupt facility
is also enabled, each bit may be programmed to generate an
1n+prrupf regquest.

Program 11.12)

Program Reguirement: To display a binary count on the
screen. When any of the switches is at
logic 1 an interrupt is generated and
the service routine indicates which
switch caused the interrupt.

The main program initialises PIO port 5 to which the
switches are connected and then enters the COUNT loop which
simply displays a twe byte count on the screen. The

initialisation commences by setting the cpu to its interrupt
mode 2 and enabling the interrupt F3ﬁ111+v The interrupt

vector is 0C50 and the upper byte, 0C, is transferred to cpu
register I. Five bytes now have to be transferred to control
port 7 and it is most convenient to transfer them using the
OTIR instruction rather than loading each byte into register
A and transferring it with the OUT instruction. The control
bvtes are stored 1in a block at 1locaticens 0C52 to 0C56
inclusive; register pair HL 1is loaded with the starting
address of the block, register B with the number of bytes in
the block, and register C with the port number to which the
bytes are to be transferred. Instruction OTIR then transfers
all five bytes.

The first control byte, CF, simply selects mode 3 on the
PIO, The next byte, 0F(=00001111), sets bhits 0§ to 3 ag inputs

and bits 4 to 7 as outputs. (Refer to 11.3.3.) The third
byte, 50, is the low byte of the interrupt vector.

The fourth byte, B7{(=10110111), is the interrupt control
byte. Bit 7 set to 1 enables the port interrupt faclity. (0
in this bit would disable the faclity.) Bit 6 set to 0
programs any one of the selected bits (see next paragraph} to
generate an interrupt regquest.{l here would indicate that
all the selected bits would have to be active to generate an
interrupt request.) Bit 5 set to 1 defines an active input
as one that 1is 1logic 1. (0 would make logic 0 the active
level.)

The final byte, F0{=11110000), has Os in it wherever a

hit ig caloctad ag one that can cauge an 1nknrrnn+ rnnnncf

e - e R L - 1= i i whRnoT LRal LR — O 8 L= =~ B

Thus, bits 0 to 3 (which are connected to the SWltCheS} are
the bits selected to cause interrupts. The initialisation is
now complete.

The interrupt service routine inputs the data on the
port, masks off the upper nibble, and saves it in register D.
The message 'ALARM STATE:' is displayed folowed by the value
of the switches. Bits 0 to 3 in register D are then tested

B-28

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

in turn:

displaved,
interrupt.

interrupt

TV ST
i |

i

PROGRAM 11.12

LOC'N
0Ccs0

0C52
0C53
0C54
0C55

[
[=)]

30 BETIEET b]
i ew se NN

[B LAY
[ST T)

[
oo
[l
Lt

Upo5
0pO7
ODOA
opoc
ODOE

Nl n
Ui v

0D11
0D12
0D14
0D16
0p18
0D19
OD1B

T T T
LI TR Y I 1)
TR T I 1)

[T]

oo
g m
ol]
3 O

Vo

0EQ4
O0EO05
OEO6
OEQ9
QEQC
OEOF
0E1Z2
OE14
0EL15

P ST
e Gdill g

if the bit is 1 the message 'Alarm x active'

where

faclity

CONTENTS

00

CF
OF
50
B7

FO

ED

FB
3E
ED
21
06
0E
ED

nM
o T

79
DF
DF
06
FF
10
Cc3

DB

™

OE

68
6A
BY

FD
10

[R

57
EF
41
52
53
54
20

1A
DF

AC
4D
54
45
00

68

0C

oD

41
20
41
JA

X 1s the number of the switch
The screen is then scrolled up six 1lines,
re-enabled, and a return made to the main

LABEL OP CODE ARGUMENTS COMMENTS
tVector.

;PI0O control bytes.

tMode 3

;1/0 select: 1low nibble is output.

:Low byte of interrupt vector.
;Interrupt control:
Enable interrupt

Any input to generate interrupt

nte artiva hich
te actlive nlgh

Mask follows.

Bits 0

INIT:

DEL:

s
{

to 3 to generate interrupt.

M 2 Mode 2

EI cpu int,
LD A,0CH Upper byte
LD 1,A of vector.
LD HL,0C52H Transfer
LD B, 05H control
LD C,07H bytes to
QTIR port 7.
INC C Display
LD A,C up

.BZHEX count on
.CRLF screen.

LD B,BY9H One

.RDEL second
DJINZ DEL delay.

JP COUNT Again.
:Interrupt service routine.

IN A, (5) Read.

AND arHg Mask off.
LD D,A Save in D.
.PRS Display

A LA message.
R M (sp)

8STA

TE 3

(sp) 00

LD A,D

.B2HEX

causing the

e I e Y o L T L o o oot

MACHINE CODE PROGRAMMTNG
for the NASCOM 1 & 2

CE17 DF 6A . CRLF
0E19 DF bA .CRLF
0E1B CB 4Z BIT 0,D Alarm 07?
GE1D CA 32 0B Jp Z,Al NO, Jump.
0E20 EF .PRS Yes,
0E21 41 8C 61 Al a display
0E24 72 6D zU r m (sp} message.,
0EZ27 30 20 81 0 (sp) a
UE2A 63 74 09 ct i
OEZD 76 65 00 v e 00
OF 30 DF 6A . CRLF
QE32 CB 4A Al: BIT i1,D Alarm 17
OE34 CA 49 0E JP %2 ,A2 No, jump
OE37 EF . PRS Yes,
OE38 41 6C 6l Al a - display
QE3B 72 6D 20 r m {(sp) message.
0E3E 31 20 61 1 (sp) a
0E41 63 74 09 cti
Qr44 76 65 08 v e (0
JE47 DE 6A .CRLF
UE49 CB 52 AZ: BIT 2,D Alarm 27?
Ui 48 CA 60 OE JP Z,A3 No, jump.
U4t EF .PRS Yes,
dRge 41 aC 61 Al a digplay
UE52 72 6D 20 r m {sp) © message.
UERS 32 20 61 2 (sp) a
HES8 63 74 69 c t i
UE Sy 76 65 U0 v e 00
UEDSE DF 6A .CRLF
Ueol CB 5HA A3: BIT 3,D Alarm 37?
UE62 CA 75 UE JP Z,SCROLL No, jump.
OGS EF . FRS Yes,
UEbG 41 6C 61 A1l a display
UELBY 72 6D 20 r m {sp) message.
OE6C 33 20 81 3 (sp) a
VE6F 63 74 69 c ot i
OE72 76 H5 GO v e 00
0E75 Ub U6 SCRULL: LD B,06H Six
0E77 DF 6A LF: . CRLF line
UE7S 14 FD DINZ LF feeds.
UE7B FB E1
0E7C ED 4D RETI

tnsure that the program 1s entered correctly, set all
the switches +to ¢, ana execute the program from location

0D00. Observe the count on the screen then flick one of the
switches to 1 and back to U. Tne appropriate message will
appear on the screen and the count will continue. Note that,
if a switch is left at 1, other switches hnave no effect.
This 1is because the c¢ondition to generate an interrupt is
already satisfied by the switch left at 1.

If the byte in location 0C55 is changed from B7 to F7,

the condition to generate an interrupt will be that all the

B-30

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

switches have to be 1. Setting bit 5 of this byte to 0 will

mamean ke ambira Yoaral AF FRea cwitcoeheae Froam 1 o Fa 0 = tho
\.—llull\jc ik [= LSV S A == LT W O WL e Ld W d TF ol e e bl e WS A de wrdRL el o S OF e b

switches should normally be at 1, going to 0 to generate an
interrupt request.

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

i§ﬂ?ndma
Registers and Memory Maps

Main Registers Alternate Registers

. N
' AW \
A F A, F,
B C B, C,
D E Dy E,
H L !-ll L,
- _ R Index Register X
IX
Indoay Raniastar ¥V
Iy | IndexRe nistar Y
sSP Stack Pointer
PC
Program Counter

CPU Registers

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

FFFFH
User ram
4 expansion ?
1000H 60 k8 steck
g——Top © tac
OFFH User ram P
OLBOR I
0COOH | M4—Space used by NAS-5YS
Yideo ram
0800H e
O7FFH
NAS-SYS l¢— EPROM
2KB
O000H
Memory Map for NASCOM 1
FFFFH
BASIC
8KB
EOOOH
DFFFH
User ram
expansion é
2FFFH
User ram
sKB
" 1000H
OFFTH
OCB80OH WorKSEa-co anf Et:cis._ Space used
- T — - 1KB
acnoH ¢ hvy NAS-SYS
OBFFH Video ram
FyY Tyt 1KB
vV Nn
O7FFH NAS-SYS
2KB
0000H

Memory Map for NASCOM 2

a-2

MACHINE CODE PROGRAMMING
for the NASCOM 1 &2

Annﬂnrhv h

Dlsplay of CPU Registers

T At E v S pm A T TORT S

ollhuLDL OlLEFING

Single stepping through a program allows the programmer
to observe the contents of the c¢pu registers after the
execution of each instruction

-
aro Aid
T Tk

Mh A ran1=¥ar Mrantaneto 1

arnlawvad ac fn P lr
.l.l,l\..- HO S e o = P-4~

Sp PC AF HL DE BC I 1IX 1Y Flags

'Flags’ is a more convenient way of showing the contents
of the flag register, F. Those flags which are set are
displayed. Note that PC indicates the address of the next
instruction to be executed.

The following program displays the register names on the
top line of the screen. It may be executed at any time; its
starting address 1is 0F88. The highest address used is OFCA,
leaving sufficient space for the stack for virtually all

mrAar Sme Haonratrar chnn1ﬂ 1+ ha nanascoarss e ralanata rFhe
t-’h V\jl.uluu. S T e W N b , LI T e B e I{MM\-UU“LJ r e N e W R bl b e T B e

program, bytes OF8F and OF90 must be changed to the new
address of MS8G, the start of the message.

CAPTIONS PROGRAM
LOC'N CONTENTS LABEL QP CODE ARGUMENTS COMMENTS

UFsa C5 PUSH BC Save BC

UEs9 D5 PUSH DE & DE

OF8A ES PUSH HL & HL.

0ré&B 11 CA OB LD DE, 0BCA Start of destn.

UFB8E 21 98 OF LD HL,MSG Start of src.

orgl g1 30 04 LD ﬂ“,OQB“ Length of msg.

0F94 ED BO LDIR Block transfer.

OF9% El POP HL Restore HL,

QF97 bl POP DE & DE,

UF9d Cl POP BC & BC.

0F99 DF 5B .MRET Return to NAS-
SY¥S.

OF9B 53 50 20 Z0MSG: S P (sp) (sp)

OFSF 20 50 43 Z0 {sp) P C (sp)

QFA3 20 20 41 20 (sp) (sp) A (sp)

OFA7 46 20 20 48 F (sp) (sp) H

OFAB 20 4C 20 20 (sp) L (sp) (sp)

QOFAF 44 20 45 20 D (sp) E (sp)

OFB3 20 42 20 43 {sp} B {sp) C

0FB7 20 20 49 20 (sp} (sp) I (sp)

OFBB 20 20 49 58 (sp) (sp) I X

OFBF 20 20 20 49 {sp) (sp) (sp) I

0OFC3 59 20 20 46 _ Y (sp) {(sp) F

0FC? 6C 61 67 73 l ags

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

Appendix ¢
Si

mple |/O Attachments

¢.l Connecting Devices to the PIOQ

Connections to port A are taken via SKA on the NASCOM 1
board, while those to port B are taken via SKB. On NASCOM 2
both ports are connected via PL4. The connections are given
below for reference. All the pins are fully TTL compatible,
ie. they may be regarded as peing driven from 74XX series
logic inside the PIO.

NASCOM 1 NASCOM 2
A7 SKA pin 8 PL4 pin 24
A6 SKA pin 7 PL4 pin 25
AS SKA pin 6 PL4 pin 23
Ad SKA pin 5 PL4 pin 21
A3 SKA pin 4 PL4 pin 19
PORT 4 A2 SKA pin 3 PL4 pin 17
Al SKA pin 2 PL4 pin 15
aAQ SKA pin 1 PL4 pin 13
ASTE SKA pin 11 PL4 pin 1l
ARDY SKA pin 10 PL4 pin 7
B? SKR pin 8 PL4 pin 5
B6 SKB pin 7 PL4 pin 3
B5 SKB pin 6 PL4 pin 1
B4 SKB pin 5 FPL4 pin 2z
B3 SKB pin 4 PL4 pin 4
PORT 5 B2 SKB pin 3 PL4 pin 6
Bl SKB pin 2 PL4 pin 38
BO SKB pin 1 PL4 pin 10
BSTR SKB pin 11 PL4 pin 9
BRDY SKB pin 10 PL4 pin 12
+5V SKA pin 16,SKB pin 16 PL4 pins 20,22
GND SKA pin 9,5KkB pin 9 PL4 pins 16,18

MACHINE CODE PROGRAMMING

for the NASCOM 1 & 2

-

c.2 Leds & Switches Attachment

This

when the port is programmed to be an output port, and bits

simply

allows bits 0 to 3 of port 4 to drive leds

0

to 3 of port 5 to be driven by switches when proarammed to be
an input port.

How NASCOM saos the davics

all 220 0

to OV of NASCOM
/L EoWer supply

T bt " D |ed 0
i bit 1 —»| & led 1
Port 4 s oA) o aa a
RN il — w &
L bit3 _ ,ig led3
bt —— | ® Switch @
f b 1 +——— ! ® Gwitch 1
Port 5§ . [o = saon =
oI £ | %] BWIICN £
bit 3 +—— | ® Switch 3
Clrcult Diagram
; ;;;u ; ;Q:. ; ;\“;‘ i;‘\“_} jede
. | [4—Iov
| N
A A A
PortA,bit 3 Porth bit 2 PortA,blt1 Porti,bit ¢

< — A <
oy ov ov
¥ ¥
PortB,bit 3 PortB,bit2

TP

c=2

LD

PortB.bit1

sV
r/iov
'Y

3

PortB.bH &

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

If, for example, port 4 bit 3 is set to 1 by an OUT
instruction, the output of the gate connected to this bit
will be logic 0 since the 7400 gate is wired as an inverter.
About 12mA will then flow through the light-emitting diode

x Iy i

{led) causing it to emit light. If the port ocutput is ¢, the
gate output will be 1logic 1 and virtually no current will
flow through the led.

The switches are 'debounced' by the two cross-connected
gates which together form a simple latch. Although the
contacts of the switches will bounce on and off for several
milliseconds after being switched, the latch outputs will be
a clean transition from one logic level to the other.

The leds may be any of the inexpensive red ones wihich
are readily available. All the gates are TTL type 7400, and
the switches are any single-pole, two-way type.

To check the operation of the circuit, one of the
outputs from the latches should be connected in turn to each

of the gates driving the leds, The switch should be able to
turn the leds on and off. This should be repeated using the
cutput of each latch in turn.

Parts Required:

4 of f red leds

3 off 7400 TTL Quad 2Z2-input NAND

4 off single-pole, two way switches

4 off 220 ohm resistors, any power rating.

c.3 Seven-segment Display

This circuit, shown on page c¢~4, is essentially the same as
the leds part of the Leds & Switches circuit. The seven-
segment display should be of the common ancde type, ie. all
the anodes of the eight leds are connected together and taken
directly to the +5V supply.

With the «circuit not connected to the NASCOM, all the
seven segments and the decimal point should light when power
is applied. when any input 1s connected +to OV the
corresponding segment should extinguish.

Parts Regquired:
l off seven-segment display,
common zanode type,

2 off 7404 (TTL Hex Inverter)
8 off 15ohm resistors, any power rating.

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

COMMON
| ANonEl'sv

o I'I

seg seg seg seg ssg 8seg dp
d

All 150 2

-« 6Y

|
!
1f oV

e D o S

b
SRR
A O I O

bit O bit1 bit2 bit3 bita bit5 bit8 bit7

-
— oL 3—+~vgs

0 OV of NABCOM
power supply

Port 4

Circuit Diagram of Seven-segment Display

c.4 Dual Position Encoder

The 556 device used in this c¢ircuit contains the
equivalent of two of the nonular 555 inteoarated circuit

L Lile R RS e UL o P L= N VL s W Ty S U U O T T

timers. Both halves of the device are connected as a
monostable. Thus, when a narrow trigger pulse is applied to
the input, an output pulse of wiath proporticnal to the value
of the 100k variable resistor is produced. The trigger pulse
is generated by the driving program and then a counter is
incremented until the end of the monostable pulse is
detected.

E

[w)

PROGRAMMING

falat] 1 Iy "1
wwth L o 4

+5V
ﬂ(i ?:oox #oox §1K
*—T— 7 T s
L2 13 j———b
. 556,
o 4 | 11
RT4,BIT 7
< ¢ 5 I r1o PORT 4,BIT 6
'_ 5 — L g - _i
PORT 4,BIT O , ol <
0.01u | 0.047m PORT 4,BIT 1
0.047 & T 0.01
> —0—6 » - P OV

Circuit Diagram of the Dual Position Encoder

Parts Reguired:

1 off
2 off
2 off
2 off

These values
either both
50k, or both

556 i.c. timer

100k linear variable resistor/potentiometer
0.047 microfarad capacitor

0.01 microfarad capacitor

are suitable for the NASCOM 1. For NASCOM 2,
the 100k variable resistors should be changed to
the 0.047 capacitors should be changed to 0.022.

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

¢c.5 General Purpeose Analogue Input/Cutput

This circuit is shown on page c-7. The output of the
digital to analogue converter, ZIN425E, is buffered by the 741
operational ampiifier wired as a non-inverting amplifier.
The range of the output voltage can be adjusted by the preset
variable resistor; with 00H from Port 5 the output voltage
will be Ov, and with FFH from Port 5 the ocutput voltage
should be adjusted to be about 4v.

For use as as analogue to digita
analogue output from the DAC is compared with the input
voltage by the integrated circuit comparator, LM311.

aq 1 converter, the
o

Parts required:
off Ferranti ZN42Z5E DAC
off 741 operational amplifier

AFF MWMaFrimamal Coamimanmditintar TMIT1T ~Aamnm=s
vl ATC] b LWL L WTIN Ll W e LY L AILS o e e bvll‘t’“

Resistors and capacitors as show

b=

O~
pu

r O
oo

e diagram

Circuit

(=]

Pulse

C-

This circuit, wused for generating narrow interrupt
pulses is simply a monostabie,

%680“1‘ f.\ rogew YIL J.TFL N
M [- VUIrFv?:
I to H
ASTB
1 14 or
NC 2 13 BSTB
NC.|
Microswitch »—¢—3 12 s
uaT 74121 i5K
NO. 4 11 ._TW
5 10—
“_0.1 MF
NG| 6 9 NG
7 8 INC.
>0V

Circult diagram of pulser

MACHINE CODE PROGRAMMING

2

—

ynduy

1Nd1iN0 LNdNI INDOIYNY 3S0dHNd TVHINID

J0yeiedwor)

088 yoy Lt
nng 3
%001 tnan "M u
10301 H—0 e ® F°
10d ANDOIVNY) g1 ne ¥ v, L9
seouy| 8 ‘v 1HOd
pay | 5

AS+ \lhl

AS +
19}16AUOY)
Joyng 1nding L enSojeuy
E LHm o} |xuBla

soyows U4 yndine ez \
[Rws 10 e|ess |In) :__ H FAR1E-
ing AD jog NS4 L] 9 JE
& -G Mg S
b e
.v.._...a.m@w.o. uuvo_” € e Y._.m_on_
AND 0 TONY
lellvp 1l Z ug
48 L)4
—ml gl > g
>m* u-‘N_\ ° ﬂF Q J
IR S
AS %

MACHINE CODE PROGRAMMING
for the NASCOM 1 & 2

Appendix d
Entering and Executing Programs

Immediately after pressing the RESET button the NASCOM

aA O owrm
begins to execute the monitor program called NAS-5Y5. Of the

many facilities provided by this program, the most important
are those which allow easy entry, modification, and execution
of the wuser program, 1le. the program which the user wishes
to run. The commands for these are given below.

Modify Memory command,M

eg. MD5C {nl) where {nl) is the NEWLINE key.

This is the command to display the content of memory
location QD5C.
The NASCUM response 1is OD5C xx where XX 1is

the current content of memory location 0D5C.

To change the content, simply overtype the displayed
content, then press NEWLINE.
Tne NASCOM response is UD5D yy that is,the

content of the next location is automatically displayed.
To terminate the M command, key .(nl) .

Note 1: Several bytes may be entered in one 1line so
long as they are separated by spaces, '

WATVE T fem 12
‘.\j JUY T R A

OD50 3E 0 Co 1 Co 2 C6 3 (nl)

0D0B xx :
Note that leading zeroes need not be entered in this case.
NOote 2: The m@mnry address may be automatically
decremented by keying :(nl)
eg. 0057 xx now key :(nl)
response 1is D56 yy
Note 3: The modaify command may be continued from vyyyy

by kKeying /yyyy(nl).

Execute command,EBE

eq. ED50 (nl)

causes the NASCUOM to execute the program beginning at
location 0D50,

Single-step command,S

oyl omrc e P Y
Y . L0 Lildl)

causes the instruction at memory location 0056 to be executed
and the contents of the registers are displayed in the form
SP PC AF HL DE BC I 1IX 1Y Fflags

To execute the next instruction of the program, simply press
NEWIL.INE

B i B Y e ke R i

"0I3Z 03 @ pue ¥ s38S _
(z WODSYN uo sGgg*T) si*z fetaq TIgL" as J4c

J0oYdS TIV¥D 0 J¢ dO *HOZ 03 ¥ 393stbax siysg -adeds Aerdstd Fowds®t 69 dC

I808 TIVD 30 ¥y 4D *y ut apon ¢ 19j3oeieyd sAeidsig 1Noy* Ld
{sug} “HpQ 03 ¥ S395 ¥ 03 Teuoizicdoad

13I% TIVD 00 G€ 40 (ZN uo swz°*z) swy'g Jo uwnuwixew e Aeysg Tags A
_ "Hoo Aq peirulwial ST butaas

s¥d TIVD LK *SMOTTOF U2Tysm butrizs Aeydsiq SYa- A5

I8¥dd 4dr 20 9§ €O

£€20°dS a1 20 €€ T¢€ *8XS-5YN 03 T0I3U0D SuUlinlay LAYW® d9 4¢

00 3T 7L &9 ZTL TL TL S% A9 ¥n/wi0113, Kerdsta Wada* 99 J¢

ATdD 1190 7O 0% 4D ‘HAO 03 ¥V $39% ~JT1/4D sdAeydsig ATID" V9 AC
*da pue I S21J1POK

NIHD TTI¥D D0 3E dO *¥ 03UT Ivjorieyd Indur 3o YNITE" €L JC

XAHZE TI¥D 70 ¥P QD X9y ur ¥ 193stber Jo siusjzuod sdefdstd XYHZI® 89 X

SUTINOI HAHSYN IeTTIWIS NOILONOA 3uUT3INCI GERS-~-S5VL

sswwiboad ayiz UT ‘xXXXX d4r ‘suorioniasut dunl sanfosqe syz ArrIewtiad s30333¢

STy, ‘003 paburYD 8Q 03 SARY 1M S9duLIaJal Alowsll ‘SXS-SYN UT 9S0yU3 ueyl UePYy 19buol S23AQ oM} X
sUO sie soUTINOI HNESYN @YUl Se ‘osSTe {[EOTIUSPI 30U 2JIB SIUTINOI dY3 SOUIS Isadmoy paitnbaxr sT 81w
smog - *mofeq Pea3sTI S9UTINOI ondSyN burpuodsaiIod SU3 UIATM Yoodq STU3 UT PIsn §1dUIIN0I SES-GYN U

UUMHQNH Aew onggyN JO sissn ‘gaseD 3s0W Ul “ordgyN € yons siol1tuow IsT1IRS mwmuwnvumvnwd_m SAS~SWN

UOISJOAUCD
ONHSVYN 01 SAS - SVYN

